Displaying publications 1 - 20 of 187 in total

Abstract:
Sort:
  1. Rahman I, Mujahid A, Palombo EA, Müller M
    Mar Pollut Bull, 2021 May;166:112226.
    PMID: 33711605 DOI: 10.1016/j.marpolbul.2021.112226
    Concerns about microplastic (MP) pollution arise from the rafting potential of these durable particles which potentially propagate harmful chemicals and bacteria across wide spatial gradients. While many studies have been conducted in the marine environment, knowledge of MPs in coastal and freshwater systems is limited. For this study, we exposed two MPs (polyethylene terephthalate and polylactic acid) to the undisturbed peat-draining Maludam River in Malaysia, for 6 months. The microbial communities on these MPs and the surrounding water were sequenced by MiSeq, while the genetic responses of these communities were assessed by GeoChip 5.0S. Microbial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria. Metabolic processes involved with carbon, nitrogen, sulfur, metal homeostasis, organic remediation and virulence had significantly different gene expression among the communities on MPs and in the surrounding water. Our study is the first to look at changes in gene expression of whole plastisphere communities.
    Matched MeSH terms: Microbiota*
  2. Naicker D, Zilm P, Nagendrababu V, Rossi-Fedele G
    Eur Endod J, 2020 12;5(3):242-247.
    PMID: 33353919 DOI: 10.14744/eej.2020.70883
    OBJECTIVE: To assess the effect of osmotic stress on various bacteria in a planktonic milieu and the effect of exposure to sodium hypochlorite (NaOCl) on the microbial cells previously subjected to osmotic stress.

    METHODS: Enterococcus faecalis, Streptococcus sanguinis, Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia were suspended as follows: Iso-osmotic group 0.9% NaCl; Hypo-osmotic group "ultrapure water"; Hyper-osmotic group 9% NaCl solution for 120 hours before exposure to 0.0001% NaOCl for 10 minutes. Quantitative analyses of viable cells were performed at 0 and 120 hours and after exposure to NaOCl to obtain colony forming units (CFU/mL). A linear mixed-effects model was used to find the association between mean CFU/mL (logarithmic transformation) and the interaction of solution Group and Time (P<0.001).

    RESULTS: F. nucleatum, P. gingivalis and P. intermedia did not survive after 24 hours in any of the solutions and were excluded from further testing. For S. sanguinis there were significant differences at each time interval, when holding solution group constant. After 120 hours, the Hyper-osmotic group presented with the highest CFU/mL and was significantly different to the Iso-osmotic group (P<0.001). For E. Faecalis, there was a significant difference for each pairwise comparison of time (P<0.001) in mean CFU/mL between 0 hours and 120 hours for the Iso-osmotic and Hyper-osmotic groups. At 120 hours, no significant differences were found between the three groups. Significant differences were also found between 0 hours and Post-NaOCl administration, and between 120 hours and Post-NaOCl administration for all three groups (P<0.001). Exposure to NaOCl after hypo-osmotic stress was associated with significantly less CFU/mL for S. sanguinis compared to hyperosmosis and iso-osmosis (P<0.001) and for E. Faecalis only compared to hyperosmosis (P<0.001).

    CONCLUSION: S. sanguinis and E. faecalis were able to withstand osmotic stress for 120 hours. Hypo-osmotic stress before contact with NaOCl was associated with lower viable bacterial numbers, when compared to the other media for the above species. Hyper-osmotic stress was associated with higher viable bacterial numbers after NaOCl exposure for E. faecalis.

    Matched MeSH terms: Microbiota*
  3. Poh PK, Ong YH, Arumugam K, Nittami T, Yeoh HK, Bessarab I, et al.
    Water Environ Res, 2021 Nov;93(11):2598-2608.
    PMID: 34260796 DOI: 10.1002/wer.1611
    Temperature is known to influence the operational efficiency of enhanced biological phosphorus removal (EBPR) systems. This study investigated the impact of thermal stress above 30°C on the properties of an EBPR community established with tropical inoculum. The results confirmed the stability of the 30°C EBPR system with high P-removal efficiency over 210 days. Accumulibacter was abundant in the community. When the EBPR sludge was subjected to a sudden temperature increase to 35°C under multiple cycles of anaerobic-aerobic phases, each lasting 4 h, high P-removal was maintained over 2 days, before gradually failing when the Competibacter appeared to outcompete Accumulibacter. These data suggested that the EBPR capacity is robust when subjected to occasional thermal stress. However, it could not be maintained even for a short time under temperature stress at 40°C. Thus, the threshold temperature for tropical EBPR failure is between 35°C and 40°C. PRACTITIONER POINTS: EBPR was stably maintained at 30°C with Accumulibacter being dominant. Good EBPR activities persisted for a short period at 35°C. EBPR was deteriorated at 40°C. The threshold temperature for tropical EBPR failure is between 35°C and 40°C.
    Matched MeSH terms: Microbiota*
  4. Yan L, Chen W, Wang C, Liu S, Liu C, Yu L, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132510.
    PMID: 34627823 DOI: 10.1016/j.chemosphere.2021.132510
    Tetracycline is a potentially hazardous residual antibiotic detected in various sewages. High concentration (mg/L) of tetracycline is found in pharmaceutical/hospital wastewater and wastewater derived from livestock and poultry. So far, only antibiotics in μg/L level have been reported in granulation of aerobic sludge during wastewater treatment, but its effects in high concentration are rarely reported. In this study, the influence of tetracycline in high concentration (∼2 mg/L) on the formation of granular sludge, structure, and metabolic function of the microbial community during the granulation of aerobic sludge was investigated to improve the understanding of the aerobic granular sludge formation under high-level of tetracycline. The role of extracellular polymers substances (EPSs) derived from granular sludge in the granulation and tetracycline removal process was also investigated, showing that tetracycline improved the relative hydrophobicity, flocculability and protein/polysaccharide ratio of EPSs, accelerating the granulation of sludge. Succession of microbial communities occurred during the domestication of functional bacteria present in the sludge and was accompanied with regulation of metabolic function. The addition of tetracycline lead to an increase of tetracycline-degrading bacteria or antibiotic resistance genus. Those findings provide new perspectives of the influence of tetracycline on aerobic sludge granulation and the removal mechanism of tetracycline.
    Matched MeSH terms: Microbiota*
  5. Gopinath D, Menon RK
    Methods Mol Biol, 2021;2327:1-15.
    PMID: 34410636 DOI: 10.1007/978-1-0716-1518-8_1
    Evidence on the role of the oral microbiome in health and disease is changing the way we understand, diagnose, and treat ailments. Numerous studies on diseases affecting the oral cavity have revealed a large amount of data that is invaluable for the advancements in diagnosing and treating these diseases. However, the clinical translation of most of these exploratory data is stalled by variable methodology between studies and non-uniform reporting of the data.Understanding the key areas that are gateways to bias in microbiome studies is imperative to overcome this challenge faced by oral microbiome research. Bias can be multifactorial and may be introduced in a microbiome research study during the formulation of the study design, sample collection and storage, or the sample processing protocols before sequencing. This chapter summarizes the recommendations from literature to eliminate bias in the microbiome research studies and to ensure the reproducibility of the microbiome research data.
    Matched MeSH terms: Microbiota*
  6. How YH, Yeo SK
    Microbiology (Reading), 2021 08;167(8).
    PMID: 34351255 DOI: 10.1099/mic.0.001076
    In recent years, oral probiotics have been researched on their effectiveness in reducing and preventing oral diseases. Oral probiotics could be introduced into the oral cavity to keep the equilibrium of the microbiome. Hence, the delivery carrier for oral probiotics plays an important factor to ensure a high number of oral probiotics were delivered and released into the oral cavity. This review presents a brief overview of oral microbiota and the role of oral probiotics in reducing oral diseases. Moreover, important aspects of the oral probiotic product such as viability, adherence ability, health effects, safety, and delivery site were discussed. Besides that, the importance of utilizing indigenous oral probiotics was also emphasized. Oral probiotics are commonly found in the market in the form of chewing tablets, lozenges, and capsules. Hence, the oral probiotic carriers currently used in the market and research were reviewed. Furthermore, this review introduces new potential oral probiotic delivery carriers such as oral strip, bucco-adhesive gel, and mouthwash. Their effectiveness in delivering oral probiotics for oral health was also explored.
    Matched MeSH terms: Microbiota*
  7. Narisetty V, Parhi P, Mohan B, Hakkim Hazeena S, Naresh Kumar A, Gullón B, et al.
    Bioresour Technol, 2022 Feb;346:126590.
    PMID: 34953996 DOI: 10.1016/j.biortech.2021.126590
    Lignocellulosic wastes have the ability to be transformed into oligosaccharides and other value-added products. The synthesis of oligosaccharides from renewable sources bestow to growing bioeconomies. Oligosaccharides are synthesized chemically or biologically from agricultural residues. These oligosaccharides are functional food supplements that have a positive impact on humans and livestock. Non-digestible oligosaccharides, refered as prebiotics are beneficial for the colonic microbiota inhabiting the f the digestive system. These microbiota plays a crucial role in stimulating the host immune system and other physiological responses. The commonly known prebiotics, galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannanooligosaccharides (MOS), and isomaltooligosaccharides (IOS) are synthesized either through enzymatic or whole cell-mediated approaches using natural or agricultural waste substrates. This review focusses on recent advancements in biological processes, for the synthesis of oligosaccharides using renewable resources (lignocellulosic substrates) for sustainable circular bioeconomy. The work also addresses the limitations associated with the processes and commercialization of the products.
    Matched MeSH terms: Microbiota*
  8. Cheng HS, Tan SP, Wong DMK, Koo WLY, Wong SH, Tan NS
    Int J Mol Sci, 2023 Mar 15;24(6).
    PMID: 36982702 DOI: 10.3390/ijms24065633
    Blood is conventionally thought to be sterile. However, emerging evidence on the blood microbiome has started to challenge this notion. Recent reports have revealed the presence of genetic materials of microbes or pathogens in the blood circulation, leading to the conceptualization of a blood microbiome that is vital for physical wellbeing. Dysbiosis of the blood microbial profile has been implicated in a wide range of health conditions. Our review aims to consolidate recent findings about the blood microbiome in human health and to highlight the existing controversies, prospects, and challenges around this topic. Current evidence does not seem to support the presence of a core healthy blood microbiome. Common microbial taxa have been identified in some diseases, for instance, Legionella and Devosia in kidney impairment, Bacteroides in cirrhosis, Escherichia/Shigella and Staphylococcus in inflammatory diseases, and Janthinobacterium in mood disorders. While the presence of culturable blood microbes remains debatable, their genetic materials in the blood could potentially be exploited to improve precision medicine for cancers, pregnancy-related complications, and asthma by augmenting patient stratification. Key controversies in blood microbiome research are the susceptibility of low-biomass samples to exogenous contamination and undetermined microbial viability from NGS-based microbial profiling, however, ongoing initiatives are attempting to mitigate these issues. We also envisage future blood microbiome research to adopt more robust and standardized approaches, to delve into the origins of these multibiome genetic materials and to focus on host-microbe interactions through the elaboration of causative and mechanistic relationships with the aid of more accurate and powerful analytical tools.
    Matched MeSH terms: Microbiota*
  9. Hendriks KP, Bisschop K, Kortenbosch HH, Kavanagh JC, Larue AEA, Chee-Chean P, et al.
    Ecology, 2021 Feb;102(2):e03237.
    PMID: 33098661 DOI: 10.1002/ecy.3237
    Classical ecological theory posits that species partition resources such that each species occupies a unique resource niche. In general, the availability of more resources allows more species to co-occur. Thus, a strong relationship between communities of consumers and their resources is expected. However, correlations may be influenced by other layers in the food web, or by the environment. Here we show, by studying the relationship between communities of consumers (land snails) and individual diets (from seed plants), that there is in fact no direct, or at most a weak but negative, relationship. However, we found that the diversity of the individual microbiome positively correlates with both consumer community diversity and individual diet diversity in three target species. Moreover, these correlations were affected by various environmental variables, such as anthropogenic activity, habitat island size, and a possibly important nutrient source, guano runoff from nearby caves. Our results suggest that the microbiome and the environment explain the absence of correlations between diet and consumer community diversity. Hence, we advocate that microbiome inventories are routinely added to any community dietary analysis, which our study shows can be done with relatively little extra effort. Our approach presents the tools to quickly obtain an overview of the relationships between consumers and their resources. We anticipate our approach to be useful for ecologists and environmentalists studying different communities in a local food web.
    Matched MeSH terms: Microbiota*
  10. Kalam N, Balasubramaniam VRMT
    Postgrad Med J, 2024 Jul 18;100(1186):539-554.
    PMID: 38493312 DOI: 10.1093/postmj/qgae030
    The microbes in the gut are crucial for maintaining the body's immune system and overall gut health. However, it is not fully understood how an unstable gut environment can lead to more severe cases of SARS-CoV-2 infection. The gut microbiota also plays a role in the gut-brain axis and interacts with the central nervous system through metabolic and neuroendocrine pathways. The interaction between the microbiota and the host's body involves hormonal, immune, and neural pathways, and any disruption in the balance of gut bacteria can lead to dysbiosis, which contributes to pathogen growth. In this context, we discuss how dysbiosis could contribute to comorbidities that increase susceptibility to SARS-CoV-2. Probiotics and fecal microbiota transplantation have successfully treated infectious and non-infectious inflammatory-related diseases, the most common comorbidities. These treatments could be adjuvant therapies for COVID-19 infection by restoring gut homeostasis and balancing the gut microbiota.
    Matched MeSH terms: Fecal Microbiota Transplantation*
  11. Su KY, Koh Kok JY, Chua YW, Ong SD, Ser HL, Pusparajah P, et al.
    Expert Rev Mol Diagn, 2022 Dec;22(12):1057-1062.
    PMID: 36629056 DOI: 10.1080/14737159.2022.2166403
    INTRODUCTION: Extracellular vesicles (EVs) are spherical membrane-derived lipid bilayers released by cells. The human microbiota consists of trillions of microorganisms, with bacteria being the largest group secreting microbial EVs. The discovery of bacterial EVs (BEVs) has garnered interest among researchers as potential diagnostic markers, given that the microbiota is known to be associated with various diseases and EVs carry important macromolecular cargo for intercellular interaction.

    AREAS COVERED: The differential bacterial composition identified from BEVs isolated from biofluids between patients and healthy controls may be valuable for detecting diseases. Therefore, BEVs may serve as novel diagnostic markers. Literature search on PubMed and Google Scholar databases was conducted. In this special report, we outline the commonly used approach for investigating BEVs in biofluids, the 16S ribosomal RNA gene sequencing of V3-V4 hypervariable regions, and the recent studies exploring the potential of BEVs as biomarkers for various diseases.

    EXPERT OPINION: The emerging field of BEVs offers new possibilities for the diagnosis of various types of diseases, although there remain issues that need to be resolved in this research area to implement BEVs in clinical applications. Hence, it is important for future studies to take these challenges into consideration when investigating the diagnostic value of BEVs.

    Matched MeSH terms: Microbiota*
  12. Uke A, Nakazono-Nagaoka E, Chuah JA, Zain NA, Amir HG, Sudesh K, et al.
    J Environ Manage, 2021 Oct 01;295:113050.
    PMID: 34198177 DOI: 10.1016/j.jenvman.2021.113050
    Oil palm trunks (OPT) are logged for replantation and the fiber residues are disposed of into the palm plantation area. The fiber residues are expected to increase soil fertility through recycling of carbon and minerals via fiber decomposition. This study investigated the effects of OPT fiber disposal and other lignocellulosic biomass on plant growth and microbial diversity in the soil environment. Four treatment plots were tested: (A) soil+OPT fiber (1:20), (B) soil+sugarcane bagasse (1:20), (C) soil+cellulose powder (1:20), and (D) unamended soil as a negative control. Low plant height, decreased chlorophyll content, and low biomass was observed in corn grown on soil mixed with OPT fiber, cellulose, and sugarcane bagasse, when compared with those of the control. The plants grown with OPT fiber were deficient in total nitrogen and magnesium when compared with those without fiber amendment, which suggested that nitrogen and minerals in soil might be taken up by changing microflora because of the OPT fibers presence. To confirm differences in the soil microflora, metagenomics analysis was performed on untreated soil and soil from each lignocellulose treatment. The microflora of soils mixed with OPT fiber, cellulose and sugarcane bagasse revealed substantial increases in bacteria such as families Cytophagaceae and Oscillospiraceae, and two major fungal genera, Trichoderma and Trichocladium, that are involved in lignocellulose degradation. OPT fiber resulted in a drastic increase in the ratios and amounts of Trichocladium in the soil when compared with those of cellulose and sugarcane bagasse. These results indicate that unregulated disposal of OPT fiber into plantation areas could result in nutrient loss from soil by increasing the abundance of microorganisms involved in lignocellulose decomposition.
    Matched MeSH terms: Microbiota*
  13. Bui-Xuan D, Tang DYY, Chew KW, Nguyen TDP, Le Ho H, Tran TNT, et al.
    J Biotechnol, 2022 Jan 10;343:120-127.
    PMID: 34896159 DOI: 10.1016/j.jbiotec.2021.12.002
    Co-culture of microalgae and microorganisms, supported with the resulting synergistic effects, can be used for wastewater treatment, biomass production, agricultural applications and etc. Therefore, this study aimed to explore the role of Bacillus subtilis (B. subtilis) in tolerance against the harsh environment of seafood wastewater, at which these microalgal-bacterial flocs were formed by microalgae cultivation. In this present study, B. subtilis isolated from the cultivation medium of Chlorella vulgaris and exposed to different salinity (0.1-4% w/v sodium chloride) and various pH range to determine the tolerant ability and biofilm formation. Interestingly, this bacteria strain that isolated from microalgae cultivation medium showed the intense viability in the salt concentration exceeding up to 4% (w/v) NaCl but demonstrated the decrease in cell division as environmental culture undergoing over pH 10. Cell viability was recorded higher than 71% and 92% for B. subtilis inoculum in media with salt concentration greater than 20 gL-1 and external pH 6.5-9, respectively. This showed that B. subtilis isolated from microalgal-bacteria cocultivation exhibited its tolerant ability to survive in the extremely harsh conditions and thus, mitigating the stresses due to salinity and pH.
    Matched MeSH terms: Microbiota*
  14. Abjani F, Madhavan P, Chong PP, Chinna K, Rhodes CA, Lim YAL
    Ann Hum Biol, 2023 Feb;50(1):137-147.
    PMID: 36650931 DOI: 10.1080/03014460.2023.2170464
    CONTEXT: The continuous rise in urbanisation and its associated factors has been reflected in the structure of the human gut ecosystem.

    OBJECTIVE: The main focus of this review is to discuss and summarise the major risk factors associated with urbanisation that affect human gut microbiota thus affecting human health.

    METHODS: Multiple medical literature databases, namely PubMed, Google, Google Scholar, and Web of Science were used to find relevant materials for urbanisation and its major factors affecting human gut microbiota/microbiome. Both layman and Medical Subject Headings (MeSH) terms were used in the search. Due to the scarcity of the data, no limitation was set on the publication date. Relevant materials in the English language which include case reports, chapters of books, journal articles, online news reports and medical records were included in this review.

    RESULTS: Based on the data discussed in the review, it is quite clear that urbanisation and its associated factors have long-standing effects on the human gut microbiota that result in alterations of gut microbial diversity and composition. This is a matter of serious concern as chronic inflammatory diseases are on the rise in urbanised societies.

    CONCLUSION: A better understanding of the factors associated with urbanisation will help us to identify and implement new biological and social approaches to prevent and treat diseases and improve health globally by deepening our understanding of these relationships and increasing studies across urbanisation gradients.HIGHLIGHTSHuman gut microbiota have been linked to almost every important function, including metabolism, intestinal homeostasis, immune system, biosynthesis of vitamins, brain processes, and behaviour.However, dysbiosis i.e., alteration in the composition and diversity of gut microbiota is associated with the pathogenesis of many chronic conditions.In the 21st century, urbanisation represents a major demographic shift in developed and developing countries.During this period of urbanisation, humans have been exposed to many environmental exposures, all of which have led to the dysbiosis of human gut microbiota.The main focus of the review is to discuss and summarise the major risk factors associated with urbanisation and how it affects the diversity and composition of gut microbiota which ultimately affects human health.

    Matched MeSH terms: Microbiota*
  15. Gani M, Mohd-Ridwan AR, Sitam FT, Kamarudin Z, Selamat SS, Awang NMZ, et al.
    World J Microbiol Biotechnol, 2024 Feb 28;40(4):111.
    PMID: 38416247 DOI: 10.1007/s11274-023-03868-x
    The gut microbiome refers to the microorganism community living within the digestive tract. The environment plays a crucial role in shaping the gut microbiome composition of animals. The gut microbiome influences the health and behavior of animals, including the critically endangered Malayan tiger (Panthera tigris jacksoni). However, the gut microbiome composition of Malayan tigers, especially those living in their natural habitats, remains poorly understood. To address this knowledge gap, we used next-generation sequencing DNA metabarcoding techniques to analyze the gut microbiome of wild Malayan tigers using fecal samples collected from their natural habitats and in captivity. Our aim was to determine the gut microbiota composition of the Malayan tiger, considering the different types of habitat environments. The results revealed a diverse microbial community within the gut microbiome of Malayan tigers. The prominent phyla that were observed included Firmicutes, Proteobacteria, Actinobacteriota, Fusobacteriota and Bacteroidota. Beta diversity analysis revealed significant differences in gut microbiome composition of Malayan tigers that inhabited oil palm plantations, in villages and protected areas. Diversity analysis also revealed significant difference in the gut microbiome between wild and captive Malayan tigers. However, the distinctions of gut microbiome between wild and captive alpha diversity did not yield significant differences. The differences in microbiome diversity resulted from the interplay of dietary intake and environmental factors. This information will facilitate the establishment of focused conservation approaches and enhance our understanding of the effect of microbiome composition on Malayan tiger health.
    Matched MeSH terms: Microbiota*
  16. Zhong H, Tang W, Li Z, Sonne C, Lam SS, Zhang X, et al.
    Nat Food, 2024 Apr;5(4):301-311.
    PMID: 38605129 DOI: 10.1038/s43016-024-00954-7
    Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.
    Matched MeSH terms: Microbiota/drug effects
  17. Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2024 Apr 04;25(7).
    PMID: 38612834 DOI: 10.3390/ijms25074024
    The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.
    Matched MeSH terms: Microbiota*
  18. Jeyaseelan A, Murugesan K, Thayanithi S, Palanisamy SB
    Environ Res, 2024 Mar 15;245:118020.
    PMID: 38151149 DOI: 10.1016/j.envres.2023.118020
    Enhancing crop yield to accommodate the ever-increasing world population has become critical, and diminishing arable land has pressured current agricultural practices. Intensive farming methods have been using more pesticides and insecticides (biocides), culminating in soil deposition, negatively impacting the microbiome. Hence, a deeper understanding of the interaction and impact of pesticides and insecticides on microbial communities is required for the scientific community. This review highlights the recent findings concerning the possible impacts of biocides on various soil microorganisms and their diversity. This review's bibliometric analysis emphasised the recent developments' statistics based on the Scopus document search. Pesticides and insecticides are reported to degrade microbes' structure, cellular processes, and distinct biochemical reactions at cellular and biochemical levels. Several biocides disrupt the relationship between plants and their microbial symbionts, hindering beneficial biological activities that are widely discussed. Most microbial target sites of or receptors are biomolecules, and biocides bind with the receptor through a ligand-based mechanism. The biomarker action mechanism in response to biocides relies on activating the receptor site by specific biochemical interactions. The production of electrophilic or nucleophilic species, free radicals, and redox-reactive agents are the significant factors of biocide's metabolic reaction. Most studies considered for the review reported the negative impact of biocides on the soil microbial community; hence, technological development is required regarding eco-friendly pesticide and insecticide, which has less or no impact on the soil microbial community.
    Matched MeSH terms: Microbiota*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links