Displaying all 5 publications

Abstract:
Sort:
  1. Ooi DJ, Iqbal S, Ismail M
    Molecules, 2012 Sep 17;17(9):11139-45.
    PMID: 22986924 DOI: 10.3390/molecules170911139
    This study presents the proximate and mineral composition of Peperomia pellucida L., an underexploited weed plant in Malaysia. Proximate analysis was performed using standard AOAC methods and mineral contents were determined using atomic absorption spectrometry. The results indicated Peperomia pellucida to be rich in crude protein, carbohydrate and total ash contents. The high amount of total ash (31.22%)suggests a high-value mineral composition comprising potassium, calcium and iron as the main elements. The present study inferred that Peperomia pellucida would serve as a good source of protein and energy as well as micronutrients in the form of a leafy vegetable for human consumption.
    Matched MeSH terms: Micronutrients/analysis
  2. Ho CW, Lazim AM, Fazry S, Zaki UKHH, Lim SJ
    Food Chem, 2017 Apr 15;221:1621-1630.
    PMID: 27979138 DOI: 10.1016/j.foodchem.2016.10.128
    Vinegars are liquid products produced from the alcoholic and subsequent acetous fermentation of carbohydrate sources. They have been used as remedies in many cultures and have been reported to provide beneficial health effects when consumed regularly. Such benefits are due to various types of polyphenols, micronutrients and other bioactive compounds found in vinegars that contribute to their pharmacological effects, among them, antimicrobial, antidiabetic, antioxidative, antiobesity and antihypertensive effects. There are many types of vinegars worldwide, including black vinegar, rice vinegar, balsamic vinegar and white wine vinegar. All these vinegars are produced using different raw materials, yeast strains and fermentation procedures, thus giving them their own unique tastes and flavours. The main volatile compound in vinegar is acetic acid, which gives vinegar its strong, sour aroma and flavour. Other volatile compounds present in vinegars are mainly alcohols, acids, esters, aldehydes and ketones. The diversity of vinegars allows extensive applications in food.
    Matched MeSH terms: Micronutrients/analysis
  3. Hicks CC, Cohen PJ, Graham NAJ, Nash KL, Allison EH, D'Lima C, et al.
    Nature, 2019 10;574(7776):95-98.
    PMID: 31554969 DOI: 10.1038/s41586-019-1592-6
    Micronutrient deficiencies account for an estimated one million premature deaths annually, and for some nations can reduce gross domestic product1,2 by up to 11%, highlighting the need for food policies that focus on improving nutrition rather than simply increasing the volume of food produced3. People gain nutrients from a varied diet, although fish-which are a rich source of bioavailable micronutrients that are essential to human health4-are often overlooked. A lack of understanding of the nutrient composition of most fish5 and how nutrient yields vary among fisheries has hindered the policy shifts that are needed to effectively harness the potential of fisheries for food and nutrition security6. Here, using the concentration of 7 nutrients in more than 350 species of marine fish, we estimate how environmental and ecological traits predict nutrient content of marine finfish species. We use this predictive model to quantify the global spatial patterns of the concentrations of nutrients in marine fisheries and compare nutrient yields to the prevalence of micronutrient deficiencies in human populations. We find that species from tropical thermal regimes contain higher concentrations of calcium, iron and zinc; smaller species contain higher concentrations of calcium, iron and omega-3 fatty acids; and species from cold thermal regimes or those with a pelagic feeding pathway contain higher concentrations of omega-3 fatty acids. There is no relationship between nutrient concentrations and total fishery yield, highlighting that the nutrient quality of a fishery is determined by the species composition. For a number of countries in which nutrient intakes are inadequate, nutrients available in marine finfish catches exceed the dietary requirements for populations that live within 100 km of the coast, and a fraction of current landings could be particularly impactful for children under 5 years of age. Our analyses suggest that fish-based food strategies have the potential to substantially contribute to global food and nutrition security.
    Matched MeSH terms: Micronutrients/analysis
  4. Koo HC, Poh BK, Talib RA
    Nutrients, 2020 Sep 29;12(10).
    PMID: 33003299 DOI: 10.3390/nu12102972
    Diet composition is a key determinant of childhood obesity. While whole grains and micronutrients are known to decrease the risk of obesity, there are no interventions originating from Southeast Asia that emphasize whole grain as a strategy to improve overall quality of diet in combating childhood obesity. The GReat-Child Trial aimed to improve whole grain intake and quality of diet among overweight and obese children. It is a quasi-experimental intervention based on Social Cognitive Theory. It has a 12-week intervention and 6-month follow-up, consisting of three components that address environmental, personal, and behavioral factors. The intervention consists of: (1) six 30 min lessons on nutrition, using the Malaysian Food Pyramid to emphasize healthy eating, (2) daily deliveries of wholegrain foods to schools so that children can experience and accept wholegrain foods, and (3) diet counseling to parents to increase availability of wholegrain foods at home. Two primary schools with similar demographics in Kuala Lumpur were assigned as control (CG) and intervention (IG) groups. Inclusion criteria were: (1) children aged 9 to 11 years who were overweight/obese; (2) who did not consume whole grain foods; and (3) who had no serious co-morbidity problems. The entire trial was completed by 63 children (31 IG; 32 CG). Study outcomes were measured at baseline and at two time points post intervention (at the 3rd [T1] and 9th [T2] months). IG demonstrated significantly higher intakes of whole grain (mean difference = 9.94, 95%CI: 7.13, 12.75, p < 0.001), fiber (mean difference = 3.07, 95% CI: 1.40, 4.73, p = 0.001), calcium (mean difference = 130.27, 95%CI: 74.15, 186.39, p < 0.001), thiamin (mean difference = 58.71, 95%CI: 26.15, 91.28, p = 0.001), riboflavin (mean difference = 0.84, 95%CI: 0.37, 1.32, p = 0.001), niacin (mean difference = 0.35, 95%CI: 1.91, 5.16, p < 0.001), and vitamin C (mean difference = 58.71, 95%CI: 26.15, 91.28, p = 0.001) compared to CG in T1, after adjusting for covariates. However, T1 results were not sustained in T2 when intervention had been discontinued. The findings indicate that intervention emphasizing whole grains improved overall short-term but not long-term dietary intake among schoolchildren. We hope the present trial will lead to adoption of policies to increase whole grain consumption among Malaysian schoolchildren.
    Matched MeSH terms: Micronutrients/analysis
  5. Khor GL, Lee SS
    Nutrients, 2021 Jul 09;13(7).
    PMID: 34371864 DOI: 10.3390/nu13072354
    This study determined the intakes of complementary foods (CFs) and milk-based formulas (MFs) by a total of 119 subjects aged 6-23.9 months from urban day care centers. Dietary intakes were assessed using two-day weighed food records. Intake adequacy of energy and nutrients was compared to the Recommended Nutrient Intakes (RNI) for Malaysia. The most commonly consumed CFs were cereals (rice, noodles, bread). The subjects derived approximately half of their energy requirements (kcals) from CFs (57 ± 35%) and MFs (56 ± 31%). Protein intake was in excess of their RNI requirements, from both CFs (145 ± 72%) and MFs (133 ± 88%). Main sources of protein included meat, dairy products, and western fast food. Intake of CFs provided less than the RNI requirements for vitamin A, thiamine, riboflavin, folate, vitamin C, calcium, iron, and zinc. Neither CF nor MF intake met the Adequate Intake (AI) requirements for essential fatty acids. These findings indicate imbalances in the dietary intake of the subjects that may have adverse health implications, including increased risk of rapid weight gain from excess protein intake, and linear growth faltering and intellectual impairment from multiple micronutrient deficiencies. Interventions are needed to improve child feeding knowledge and practices among parents and child care providers.
    Matched MeSH terms: Micronutrients/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links