Displaying all 10 publications

Abstract:
Sort:
  1. Cheah PL, Li J, Looi LM, Koh CC, Lau TP, Chang SW, et al.
    Malays J Pathol, 2019 Aug;41(2):91-100.
    PMID: 31427545
    Since 2014, the National Comprehensive Cancer Network (NCCN) has recommended that colorectal carcinoma (CRC) be universally tested for high microsatellite instability (MSI-H) which is present in 15% of such cancers. Fidelity of resultant microsatellites during DNA replication is contingent upon an intact mismatch repair (MMR) system and lack of fidelity can result in tumourigenesis. Prior to commencing routine screening for MSI-H, we assessed two commonly used methods, immunohistochemical (IHC) determination of loss of MMR gene products viz MLH1, MSH2, MSH6 and PMS2 against PCR amplification and subsequent fragment analysis of microsatellite markers, BAT25, BAT26, D2S123, D5S346 and D17S250 (Bethesda markers) in 73 unselected primary CRC. 15.1% (11/73) were categorized as MSI-H while deficient MMR (dMMR) was detected in 16.4% (12/73). Of the dMMR, 66.7% (8/12) were classified MSI-H, while 33.3% (4/12) were microsatellite stable/low microsatellite instability (MSS/MSI-L). Of the proficient MMR (pMMR), 95.1% (58/61) were MSS/MSI-L and 4.9% (3/61) were MSI-H. The κ value of 0.639 (standard error =0.125; p = 0.000) indicated substantial agreement between detection of loss of DNA mismatch repair using immunohistochemistry and the detection of downstream microsatellite instability using PCR. After consideration of advantages and shortcomings of both methods, it is our opinion that the choice of preferred technique for MSI analysis would depend on the type of laboratory carrying out the testing.
    Matched MeSH terms: Microsatellite Instability
  2. Ashazila MJ, Kannan TP, Venkatesh RN, Hoh BP
    Oral Oncol, 2011 May;47(5):358-64.
    PMID: 21450513 DOI: 10.1016/j.oraloncology.2011.03.005
    Loss of heterozygosity (LOH) and microsatellite instability (MSI) have been documented as important events in oral squamous cell carcinoma (OSCC). Five microsatellite markers D3S192, D3S966, D3S647, D3S1228 and D3S659 were selected on chromosome 3p because of high frequency of alterations reported in head and neck squamous cell carcinoma and the involvement of von Hippel Lindau (VHL) at 3p25-26 and the fragile histidine triad (FHIT) at 3p14.2 genes proven in many tumour types. A total of 50 archival tissue samples of OSCC and corresponding normal samples were analyzed for LOH and MSI status. The overall LOH for the markers selected on 3p was 56 out of 189 informative cases (29.6%). The most frequent LOH was identified for the marker D3S966 which was 18/42 (42.8%) of informative cases suggesting the presence of putative tumour suppressor genes (TSGs) in this loci. In this study, high frequency of microsatellite instability was found in D3S966 which was 28.6% of informative cases; this reveals the possibility of mutations of MMR genes in this region. Frequent microsatellite alterations (MA) were observed in 3 markers D3S966 (71.4%), D3S1228 (56.7%) and D3S192 (41.0%). There was no significant association between LOH with gender, tumour stages and differentiation grades. However, there was a significant association between tumour stage and differentiation grades with MSI status in OSCC in Malaysian population with p values of 0.002 and 0.035, respectively. There was also a significant association between MA and differentiation grades (p=0.041).
    Matched MeSH terms: Microsatellite Instability*
  3. Parra-Medina R, Lopez-Correa P, Gutierrez V, Polo F
    Malays J Pathol, 2018 Aug;40(2):199-202.
    PMID: 30173239
    A 43-year-old man presented with two-month history of fatigue, weakness, paleness, rectal bleeding, sweating, and weight loss of 10 kg in the past one month. A complete blood count revealed anaemia. The patient underwent a right hemicolectomy. The microscopic examination revealed an adenosquamous carcinoma associated with a mucinous adenocarcinoma in a patient with microsatellite instability due to loss of MLH1 and PMS2 expression and retention of MSH2 and MSH6 expression in both the squamous and glandular components. We also observed an atypical immunohistochemical phenotype in the adenocarcinoma component showing CK7 expression and reduced CK20 and CDX2 expression.
    Matched MeSH terms: Microsatellite Instability*
  4. Radzak S, Khair Z, Ahmad F, Idris Z, Yusoff A
    Turk Neurosurg, 2021;31(1):99-106.
    PMID: 33491172 DOI: 10.5137/1019-5149.JTN.27893-20.4
    AIM: To determine the mitochondrial microsatellite instability (mtMSI) status in a series of Malaysian patients with brain tumors. Furthermore, we analyzed whether the mtMSI status is associated with the clinicopathological features of the patients.

    MATERIAL AND METHODS: Forty fresh frozen tumor tissues along with blood samples of brain tumor patients were analyzed for mtMSI by PCR amplification of genomic DNAs, and the amplicons were directly sequenced in both directions using Sanger sequencing.

    RESULTS: Microsatellite analysis revealed that 20% (8 out of 40) of the tumors were mtMSI positive with a total of 8 mtMSI changes. All mtMSI markers were detected in D310 and D16184 of the D-loop region. Additionally, no significant association was observed between mtMSI status and clinicopathological features.

    CONCLUSION: The variations, specifically the mtMSI, suggest that the mitochondrial DNA (mtDNA) can be targeted for genomic alteration in brain tumors. Therefore, the specific role of mtDNA alteration in brain tumor development and prognosis requires further investigation.

    Matched MeSH terms: Microsatellite Instability*
  5. Haron NH, Mohamad Hanif EA, Abdul Manaf MR, Yaakub JA, Harun R, Mohamed R, et al.
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):509-517.
    PMID: 30803214
    Introduction: Microsatellite instability (MSI) is a hallmark of defective DNA mismatch repair (MMR) of genes
    especially MLH1 and MSH2. It is frequently involved in the carcinogenesis of various tumours including gastric
    cancer (GC). However, MSI in GCs have not been reported in Malaysia before. Objective: This study was conducted
    to determine the microsatellite instability (MSI) status in gastric cancer by microsatellite analysis, sequencing, its
    association with MLH1 and MSH2 protein expression and H.pylori infection by immunohistochemistry. Method:
    A total of 60 gastric cancer cases were retrieved. DNA was extracted from paired normal and tumour tissues while
    MLH1 and MSH2 protein expression as well as H. pylori status were determined by IHC staining. For microsatellite
    analysis, polymerase chain reaction (PCR) was performed for paired tissue samples using a panel of five microsatellite
    markers. MSI-positive results were subjected for DNA sequencing to assess mutations in the MLH1 and MSH2 genes.
    Results: Microsatellite analysis identified ten MSI positive cases (16.7%), out of which only six cases (10.3%) showed
    absence of MLH1 (n=3) or MSH2 (n=3) protein expression by IHC. The most frequent microsatellite marker in MSI
    positive cases was BAT26 (90%). Nine of ten MSI positive cases were intestinal type with one diffuse and all were
    located distally. H. pylori infection was detected in 13 of 60 cases (21.7%) including in three MSI positive cases. All
    these results however were not statistically significant. Our sequencing data displayed novel mutations. However these
    data were not statistically correlated with expression levels of MLH1 and MSH2 proteins by IHC. This may be due to
    small sample size to detect small or moderately sized effects. Conclusion: The frequency of MSI in this study was
    comparable with published results. Determination of affected MMR genes by more than two antibodies may increase
    the sensitivity of IHC to that of MSI analysis.
    Matched MeSH terms: Microsatellite Instability*
  6. Salahshourifar I, Vincent-Chong VK, Chang HY, Ser HL, Ramanathan A, Kallarakkal TG, et al.
    Clin Oral Investig, 2015 Dec;19(9):2273-83.
    PMID: 25846277 DOI: 10.1007/s00784-015-1467-7
    OBJECTIVES: This study includes the direct sequencing of cornulin (CRNN) gene to elucidate the possible mechanism of CRNN downregulation and explore the genetic imbalances at 1q21.3 across oral squamous cell carcinoma (OSCC) samples.

    MATERIALS AND METHODS: In mutation screening of CRNN gene, gDNA from OSCC tissues were extracted, amplified, and followed by direct sequencing. OSCC samples were also subjected to fragment analysis on CRNN gene to investigate its microsatellite instability (MSI) and loss of heterozygosity (LOH). Immunohistochemistry was performed to validate CRNN downregulation in OSCC samples.

    RESULTS: No pathogenic mutation was found in CRNN gene, while high frequency of allelic imbalances was found at 1q21.3 region. MSI was found more frequent (25.3 %) than LOH (9.3 %). Approximately 22.6 % of cases had high MSI which reflects higher probability of inactivation of DNA mismatch repair genes. MSI showed significant association with no betel quid chewing (p = 0.003) and tongue subsite (p = 0.026). LOH was associated with ethnicity (p = 0.008) and advanced staging (p = 0.039). The LOH at 1q21.3 was identified to be as an independent prognostic marker in OSCC (HRR = 7.15 (95 % CI, 1.41-36.25), p = 0.018). Downregulation of CRNN was found among MSI-positive OSCCs and was associated with poor prognosis (p = 0.044).

    CONCLUSION: This study showed a significant correlation between LOH/MSI at 1q21.3 with clinical outcomes and that downregulation of CRNN gene could be considered as a prognostic marker of OSCC.

    CLINICAL RELEVANCE: Insights of the downregulation mode of CRNN gene lays the basis of drug development on this gene as well as revealing its prognostic value.

    Matched MeSH terms: Microsatellite Instability
  7. Yam YY, Hoh BP, Othman NH, Hassan S, Yahya MM, Zakaria Z, et al.
    Genet. Mol. Res., 2013;12(1):319-27.
    PMID: 23420356 DOI: 10.4238/2013.February.7.1
    Colorectal cancer is one of the most common cancers in many countries, including Malaysia. The accumulation of genomic alterations is an important feature of colorectal carcinogenesis. A better understanding of the molecular events underlying the stages of colorectal carcinogenesis might be helpful in the detection and management of the disease. We used a commercially available single-nucleotide polymorphism genotyping array to detect both copy number abnormalities (CNAs) and copy-neutral loss of heterozygosity (LOH) in sporadic colorectal carcinomas. Matched tumor and normal tissues of 13 colorectal carcinomas (Dukes' stages A-D) were analyzed using a 250K single nucleotide polymorphism array. An additional assay was performed to determine the microsatellite instability status by using the National Cancer Institute-recommended BAT-26 panel. In general, copy number gain (92.3%) was most common, followed by copy number loss (53.8%) and copy-neutral LOH (46.2%). Frequent CNAs of gains and losses were observed on chromosomes 7p, 8, 13q, 17p, 18q, and 20q, and copy-neutral LOH was observed on chromosomes 2, 6, 12, 13q, 14q, 17, 20p, 19q, and 22q. Even though genomic alterations are associated with colorectal cancer progression, our results showed that DNA CNAs and copy-neutral LOH do not reflect disease progression in at least 50% tumors. Copy-neutral LOH was observed in both early and advanced tumors, which favors the involvement of these genomic alterations in the early stages of tumor development.
    Matched MeSH terms: Microsatellite Instability
  8. Tan LP, Ng BK, Balraj P, Lim PK, Peh SC
    Pathology, 2007 Apr;39(2):228-34.
    PMID: 17454753
    BACKGROUND AND AIMS: Colorectal cancers of different subtypes involve different pathogenic pathways like the Wnt and the mutator pathways. In this study, we screened 73 colorectal cancer cases from a multi-racial group for genetic and expression profile defects with the aim of correlating these with patients' clinicopathological characteristics.
    METHODS: Mutation screening of the entire coding region of APC and exon 3 of CTNNB1, loss of heterozygosity (LOH) of APC, and microsatellite instability (MSI) status were assessed for 44 patients with available paired frozen normal and tumour tissues. In addition, 29 cases with available paraffin embedded tumour blocks were screened for mutation in exon 3 of CTNNB1, the APC mutation cluster region (codon 1286-1513), and hMLH1, hMSH2, hMSH6 protein expressions by immunohistochemistry method.
    RESULTS: In our study, 15/73 cases showed APC mutations (20.5%), 1/73 cases had CTNNB1 mutation (1.4%), 5/32 cases had APC LOH (15.6%), and 16/70 (22.9%) cases revealed at least some form of mismatch repair (MMR) defect. Tumour grade (poor differentiation) was found to correlate significantly with right-sided tumour and mucinous histology (p = 0.01879 and 0.00320, respectively). Patients of younger age (below 45 years) more often had tumours of mucinous histology (p = 0.00014), while patients of older age (above 75 years) more often had tumours on the right side of the colon (p = 0.02448). Tumours of the mucinous histology subtype often had MMR defects (p = 0.02686). There was no difference in the occurrence of APC and CTNNB1 mutations and MMR defects found within our multi-racial colorectal cancer patient cohort.
    CONCLUSION: Our findings support the notion that racial factor may not be related to the occurrence of MMR defects and APC and CTNNB1 mutations in our multi-racial patient cohort.
    Matched MeSH terms: Microsatellite Instability
  9. Hamid S, Lim KP, Zain RB, Ismail SM, Lau SH, Mustafa WM, et al.
    Int J Mol Med, 2007 Mar;19(3):453-60.
    PMID: 17273794
    We have established 3 cell lines ORL-48, -115 and -136 from surgically resected specimens obtained from untreated primary human oral squamous cell carcinomas of the oral cavity. The in vitro growth characteristics, epithelial origin, in vitro anchorage independency, human papilloma-virus (HPV) infection, microsatellite instability status, karyotype and the status of various cell cycle regulators and gatekeepers of these cell lines were investigated. All 3 cell lines grew as monolayers with doubling times ranging between 26.4 and 40.8 h and were immortal. Karyotyping confirmed that these cell lines were of human origin with multiple random losses and gains of entire chromosomes and regions of chromosomes. Immunohistochemistry staining of cytokeratins confirmed the epithelial origin of these cell lines, and the low degree of anchorage independency expressed by these cell lines suggests non-transformed phenotypes. Genetic analysis identified mutations in the p53 gene in all cell lines and hypermethylation of p16INK4a in ORL-48 and -136. Analysis of MDM2 and EGFR expression indicated MDM2 overexpression in ORL-48 and EGFR overexpression in ORL-136 in comparison to the protein levels in normal oral keratinocytes. Analysis of the BAT-26 polyadenine repeat sequence and MLH-1 and MSH-2 repair enzymes demonstrated that all 3 cell lines were microsatellite stable. The role of HPV in driving carcinogenesis in these tumours was negated by the absence of HPV. Finally, analysis of the tissues from which these cell lines were derived indicated that the cell lines were genetically representative of the tumours, and, therefore, are useful tools in the understanding of the molecular changes associated with oral cancers.
    Matched MeSH terms: Microsatellite Instability
  10. Kaur G, Masoud A, Raihan N, Radzi M, Khamizar W, Kam LS
    Indian J Med Res, 2011 Aug;134:186-92.
    PMID: 21911971
    DNA mismatch repair gene (MMR) abnormalities are seen in 95 per cent of hereditary nonpolyposis colorectal cancer (HNPCC) and 10-15 per cent of sporadic colorectal cancers. There are no data on MMR abnormalities in Malaysian colorectal cancer patients. This study was aimed to determine the frequency of abnormal MMR gene protein expression in colorectal carcinoma in Northern Peninsular Malaysia using immunohistochemistry.
    Matched MeSH terms: Microsatellite Instability
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links