Displaying all 14 publications

  1. Traub R, Nadchatram M
    J Med Entomol, 1967 Nov;4(4):483-9.
    PMID: 5623790
    Matched MeSH terms: Mites/anatomy & histology
  2. Vercammen-Grandjean PH, Langston RL
    J Med Entomol, 1971 Oct 30;8(4):450-3.
    PMID: 5159261
    Matched MeSH terms: Mites/anatomy & histology
  3. Vercammen-Grandjean PH
    Folia Parasitol., 1972;19(3):227-52.
    PMID: 4670829
    Matched MeSH terms: Mites/anatomy & histology
  4. Colloff MJ, Cameron SL
    Zootaxa, 2014;3780:263-81.
    PMID: 24871836 DOI: 10.11646/zootaxa.3780.2.3
    The genus Austronothrus was previously known from three species recorded only from New Zealand. Austronothrus kinabalu sp. nov. is described from Sabah, Borneo and A. rostralis sp. nov. from Norfolk Island, south-west Pacific. A key to Austronothrus is included. These new species extend the distribution of Austronothrus beyond New Zealand and confirms that the subfamily Crotoniinae is not confined to former Gondwanan landmasses. The distribution pattern of Austronothrus spp., combining Oriental and Gondwanan localities, is indicative of a curved, linear track; consistent with the accretion of island arcs and volcanic terranes around the plate margins of the Pacific Ocean, with older taxa persisting on younger island though localised dispersal within island arc metapopulations. Phylogenetic analysis and an area cladogram are consistent with a broad ancestral distribution of Austronothrus in the Oriental region and on Gondwanan terranes, with subsequent divergence and distribution southward from the Sunda region to New Zealand. This pattern is more complex than might be expected if the New Zealand oribatid fauna was derived from dispersal following re-emergence of land after inundation during the Oligocene (25 mya), as well as if the fauna emanated from endemic, relictual taxa following separation of New Zealand from Gondwana during the Cretaceous (80 mya).
    Matched MeSH terms: Mites/anatomy & histology
  5. Ernieenor FCL, Ernna G, Jafson AS, Mariana A
    Exp Appl Acarol, 2018 Sep;76(1):99-107.
    PMID: 30151715 DOI: 10.1007/s10493-018-0285-4
    The occurrence of Suidasia medanensis (= S. pontifica) mites in Malaysian house dust was first reported in 1984. The taxonomy of this storage mite is, however, quite confusing. Therefore, we need an accurate identification to resolve morphological problems due to its minute size and some overlapping characters between species. The purpose of this study was to demonstrate the application of partial mitochondrial cytochrome c oxidase subunit I (COI) sequences for the identification of S. medanensis by PCR. Identity of the mite was first determined by observing morphological characters under a light microscope. Genomic DNA of S. medanensis mites was successfully extracted prior to PCR and DNA sequencing using COI universal primers. The length of the COI sequences obtained was 378 bp. BLAST analysis of amplicon sequences showed that local S. medanensis COI region had 99% maximum identity with S. medanensis nucleotide sequence (AY525568) available in the GenBank. As the phylogenetic tree generated indicated, COI sequences from this study were clustered with S. medanensis from Korea and the UK in one major clade, supported with high bootstrap value (> 85%). Results of the phylogenetic analysis of this COI gene were congruent with the morphological identification and provided strong support for a single clade of local S. medanensis.
    Matched MeSH terms: Mites/anatomy & histology
  6. Jeffery J, Norhidayu S, Mohd Zain SN, Noor Hayati MI, Nurazila B
    Trop Biomed, 2012 Jun;29(2):308-10.
    PMID: 22735855 MyJurnal
    The cat fur mite, Lynxacarus radovskyi Tenorio, 1974 (Acarina: Astigmata: Listrophoridae) is reported from cats, Felis catus from three sites in peninsular Malaysia. The first site is a Malay village, Kampong Menteri in Taiping, Perak, where the mites were found on local pet cats. The other two sites are urban cities of Kuala Lumpur, in the Federal Territory and Georgetown, in the island of Penang. Mites from the urban areas were collected from stray cats. Although several ectoparasites (fleas, mites, ticks and lice) have been previously reported, L. radovskyi is recorded herein for the first time on cats from peninsular Malaysia.
    Matched MeSH terms: Mites/anatomy & histology
  7. Nadchatram M
    Trop Biomed, 2006 Jun;23(1):1-22.
    PMID: 17041547 MyJurnal
    Some 2,000 species of mites of the family Trombiculidae are known in the world. The 6-legged larvae are mostly ectoparasites of reptiles, birds, mammals and invertebrates. Their 8-legged active nymphs and adults are free-living predators. In the Asia-Pacific region, a few species in various genera are vectors of scrub typhus and scrub-itch. In this a paper, a very bizarre trombiculid species, Vatacarus ipoides Southcott 1957, endoparasitic in the trachea of the amphibious sea snake, Laticauda colubrina (Schenider) is re-described based mostly on new-born larvae reared in the laboratory. Life history study of the mite produced very novel and interesting results. A brief account of the life-cycle was presented at the first laboratory demonstration of the Malaysian Society of Parasitology and Tropical Medicine Meeting by Nadchatram and Audy (1965). The life history is illustrated and described here in greater detail. The active nymphal, and the akinetic teleiophane stages are bypassed, which is unusual in the life-cycle of the family Trombiculidae. Also, the larva is the only stage in the life-cycle that feeds. The sexes are predetermined in the larval neosomatic stage and give rise to small males and bigger females. Having obtained adults of the species, by rearing, it is deemed unnecessary for the original proposal by Southcott to erect a new family, Vatacaridae, because the adults share all the attributes of the family Trombiculidae. The male and female obtained through laboratory rearing are illustrated for the first time. Relationship of V. ipoides with Laticauda snakes show close host-specificity, in a group of acarines that are generally habitat-specific. Possible explanations for their association are discussed. The unusual morphology and the formation of new structures during an instar is of ontogenetic and evolutionary importance. The hypertrophic larvae are superficially vermiform, rather than typically acarine in shape. This, and other biological features, necessitated the proposal of new morphological terms, and they are discussed here.
    Matched MeSH terms: Mites/anatomy & histology
  8. Anderson DL, Trueman JW
    Exp Appl Acarol, 2000 Mar;24(3):165-89.
    PMID: 11108385
    Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study. Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas. Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine protocols for bee mites, and may present new strategies for mite control.
    Matched MeSH terms: Mites/anatomy & histology
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links