Displaying publications 1 - 20 of 694 in total

Abstract:
Sort:
  1. Yunos NM, Al-Thiabat MG, Sallehudin NJ, Wahab HA
    Curr Pharm Biotechnol, 2024;25(16):2154-2165.
    PMID: 38425119 DOI: 10.2174/0113892010273336240221101506
    BACKGROUND: Quassinoids are degraded triterpene compounds that can be obtained from various species of the Simaroubaceae plant family, including Eurycoma longifolia. Quassinoids are the major compounds in E. longifolia, and they are known to have various medicinal potentials, such as anticancer and antimalarial properties. Dihydrofolate reductase (DHFR) was reported to be one of the important targets for certain anticancer and antimalarial drugs. Twelve quassinoids from E. longifolia were identified to have anticancer effects based on their IC50 values. This study aimed to evaluate the interactions of these twelve quassinoids with DHFR via Autodock 4.2 software and Biovia Discovery Studio Visualiser.

    METHODS: Twelve quassinoids from E. longifolia and their interactions with DHFR were evaluated via Autodock 4.2 software and Biovia Discovery Studio Visualiser. Their drug-likeness and pharmacokinetic properties were also assessed using the ADMETlab 2.0 program.

    RESULTS: The molecular docking results showed that eleven quassinoids showed better docking scores than methotrexate, in which the binding energy (BE) of these quassinoids ranged from - 7.87 to -9.58 kcal/mol. Their inhibition constant (Ki) ranged from 0.095 to 1.71 μM. At the same time, the BE and Ki values for methotrexate were -7.80 kcal/mol and 1.64 μM, respectively.

    CONCLUSION: From the analysis, 6-dehydrolongilactone and eurycomalide B are among the twelve compounds that showed great potential as hit-to-lead compounds based on the docking score on DHFR, drug-likeness, and ADMET properties. These results suggest a great potential to pursue validation studies via in vitro and in vivo models.

    Matched MeSH terms: Molecular Docking Simulation*
  2. Li D, Faiza M, Ali S, Wang W, Tan CP, Yang B, et al.
    Appl Biochem Biotechnol, 2018 Apr;184(4):1061-1072.
    PMID: 28948493 DOI: 10.1007/s12010-017-2594-1
    A highly efficient process for reducing the fatty acid (FA) content of high-acid rice bran oil (RBO) was developed by immobilized partial glycerides-selective lipase SMG1-F278N-catalyzed esterification/transesterification using methanol as a novel acyl acceptor. Molecular docking simulation indicated that methanol was much closer to the catalytic serine (Ser-171) compared with ethanol and glycerol, which might be one of the reasons for its high efficiency in the deacidification of high-acid RBO. Additionally, the reaction parameters were optimized to minimize the FA content of high-acid RBO. Under the optimal conditions (substrate molar ratio of methanol to FAs of 1.8:1, enzyme loading of 40 U/g, and at 30 °C), FA content decreased from 25.14 to 0.03% after 6 h of reaction. Immobilized SMG1-F278N exhibited excellent methanol tolerance and retained almost 100% of its initial activity after being used for ten batches. After purification by molecular distillation, the final product contained 97.86% triacylglycerol, 2.10% diacylglycerol, and 0.04% FA. The acid value of the final product was 0.09 mg KOH/g, which reached the grade one standard of edible oil. Overall, methanol was a superior acyl acceptor for the deacidification of high-acid RBO and the high reusability of immobilized SMG1-F278N indicates an economically attractive process.
    Matched MeSH terms: Molecular Docking Simulation*
  3. Hamid N, Junaid M, Salim NB, Manzoor R, Chuan OM
    Food Chem Toxicol, 2024 Dec;194:115074.
    PMID: 39461501 DOI: 10.1016/j.fct.2024.115074
    Perfluorooctanoic acid (PFOA) is a long-chain legacy congener of the per- and polyfluoroalkyl substances (PFAS) family, notorious as a "forever chemical" owing to its environmental persistence and toxic nature. Essential elements such as zinc (Zn) can cause toxic effects when they change their metal speciation and become bioavailable, such as zinc sulfate (ZnSO4). Combined toxicity assessment is a realistic approach and a challenging task to evaluate chemical interactions and associated risks. Therefore, the present study aims to elucidate the acute mixture toxicity (12-48 h) of PFOA and ZnSO4 in Daphnia magna at environment-relevant concentrations (ERCs, low dose: PFOA 10 μg/L ZnSO4 20 μg/L; high dose: PFOA 20 μg/L ZnSO4 50 μg/L) in terms of developmental impact, apoptosis induction, and interaction with major endogenous antioxidants. Our results showed that deformity rates significantly increased (p molecular docking results revealed that both PFOA and ZnSO4 showed strong binding affinities with endogenous antioxidants CAT and GST, where PFOA was more strongly bound with CAT and GST with higher docking scores of -9.59 kcal/mol and -7.49 kcal/mol than those with ZnSO4 (-6.70 kcal/mol and -6.55 kcal/mol, respectively). In conclusion, the mixture exposure to PFOA and ZnSO4 at the environmental level induce developmental impacts and apoptosis through binding with major endogenous antioxidants in D. magna.
    Matched MeSH terms: Molecular Docking Simulation*
  4. Rabiu Z, Hamzah MAAM, Hasham R, Zakaria ZA
    Environ Sci Pollut Res Int, 2021 Aug;28(30):40535-40543.
    PMID: 32418105 DOI: 10.1007/s11356-020-09209-x
    Pyroligneous acid (PA) obtained from slow pyrolysis of palm kernel shell (PKS) has high total phenolic contents and exhibits various biological activities including antioxidant, antibacterial and antifungal. In this study, PA obtained using slow pyrolysis method and fractionated using column chromatography was characterized (chemical and antioxidative properties) and investigated for its cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibition activities using the in vitro and in silico approaches. The F9 PA fraction exhibited highest total phenolic content of 181.75 ± 17.0 μg/mL. Fraction F21-25 showed ferric reducing antioxidant power (FRAP) (331.80 ± 4.60 mg TE/g) and IC50 of 18.56 ± 0.01 μg/mL towards COX-2 and 5.25 ± 0.03 μg/mL towards the 5-LOX enzymes, respectively. Molecular docking analysis suggested favourable binding energy for all chemical compounds present in fraction F21-25, notably 1-(2,4,6-trihydroxyphenyl)-2-pentanone, towards both COX-2 (- 6.9 kcal/mol) and 5-LOX (- 6.4 kcal/mol) enzymes. As a conclusion, PA from PKS has the potential to be used as an alternative antioxidant and antiinflammatory agents which is biodegradable and a more sustainable supply of raw materials.
    Matched MeSH terms: Molecular Docking Simulation
  5. Reena G, Ranjani R, Goutham KD, Sangeetha K
    Trop Biomed, 2023 Jun 01;40(2):124-128.
    PMID: 37650397 DOI: 10.47665/tb.40.2.001
    Peptide therapeutics are found to be an emerging and attractive class of treatment due to their highly specific and safe nature. Hence twenty plant peptides were subjected to screening by molecular docking against the envelope protein of the dengue virus using Clus Pro, Patch Dock, and HADDOCK servers. Physicochemical parameters, allergenicity, and toxicity profile of the plant peptides were estimated by Protparam analysis, AllergenFP, and ToxinPred web servers. Six potential compounds namely Ginkbilobin, Cycloviolin-D, Circulin-B, Circulin-A, Cycloviolacin-013, and Circulin-C showed the highest binding energy with both nonallergenic and nontoxic properties. They also exhibited desirable half-lives extending to 30 hrs except for Ginkbilobin, which showed the least half-life of 4.4 hours and non-polar activity. The residues of Ala-4 of Ginkbilobin; Arg-30 of Cycloviolin D; Arg-29 of Circulin A and C interacted with the Try 101 of the domain II of Envelope protein, implying the possible inhibition of the insertion process of the trimeric E protein during fusion with the host cells. Thus, the identified plant peptides could serve as potential leads upon further subjection to in vitro studies.
    Matched MeSH terms: Molecular Docking Simulation
  6. Inayatsyah NA, Ridhwan MJM, Aznirulhisham AA, Rasol NE, Kasim N, Imran S
    Chem Biol Drug Des, 2024 Sep;104(3):e14614.
    PMID: 39301746 DOI: 10.1111/cbdd.14614
    Diabetes Mellitus (DM) is linked to various factors causing cardiovascular diseases, with uncontrolled postprandial hyperglycemia being a direct contributor. α-Glucosidase inhibitors (AGIs) aid in reducing postprandial hyperglycemia, potentially mitigating cardiovascular risks. In order to synthesize novel chemical scaffolds with possible α-glucosidase inhibition activity, a series of novel soritin sulfonamide derivatives were synthesized. The soritin hydrazide was treated with various aryl sulfonyl chlorides to obtain targeted compounds (1-16). Findings suggested that all compounds have better α-glucosidase inhibition compared to standard drugs, acarbose (2187.00 ± 1.25 μM) and 1-deoxynojirimycin (334.90 ± 1.10 μM), with IC50 values ranging from 3.81 ± 1.67 μM to 265.40 ± 1.58 μM. The most potent analog was Compound 13, a trichloro phenyl substituted compound, with IC50 value of 3.81 ± 1.67 μM. Structure-activity relationship (SAR) showed that introducing an additional chlorine group into the parent nucleus increases the potency. The docking studies validated that Compound 13 established hydrogen bonds with the active site residues Asp214, Glu276, and Asp349, while being further stabilized by hydrophobic interactions, providing an explanation for its high potency.
    Matched MeSH terms: Molecular Docking Simulation*
  7. Bharadwaj KK, Sarkar T, Ghosh A, Baishya D, Rabha B, Panda MK, et al.
    Appl Biochem Biotechnol, 2021 Oct;193(10):3371-3394.
    PMID: 34212286 DOI: 10.1007/s12010-021-03608-7
    COVID-19 is a disease that puts most of the world on lockdown and the search for therapeutic drugs is still ongoing. Therefore, this study used in silico screening to identify natural bioactive compounds from fruits, herbaceous plants, and marine invertebrates that are able to inhibit protease activity in SARS-CoV-2 (PDB: 6LU7). We have used extensive screening strategies such as drug likeliness, antiviral activity value prediction, molecular docking, ADME, molecular dynamics (MD) simulation, and MM/GBSA. A total of 17 compounds were shortlisted using Lipinski's rule in which 5 compounds showed significant predicted antiviral activity values. Among these 5, only 2 compounds, Macrolactin A and Stachyflin, showed good binding energy of -9.22 and -8.00 kcal/mol, respectively, within the binding pocket of the Mpro catalytic residues (HIS 41 and CYS 145). These two compounds were further analyzed to determine their ADME properties. The ADME evaluation of these 2 compounds suggested that they could be effective in developing therapeutic drugs to be used in clinical trials. MD simulations showed that protein-ligand complexes of Macrolactin A and Stachyflin with the target receptor (6LU7) were stable for 100 nanoseconds. The MM/GBSA calculations of Mpro-Macrolactin A complex indicated higher binding free energy (-42.58 ± 6.35 kcal/mol). Dynamic cross-correlation matrix (DCCM) and principal component analysis (PCA) on the residual movement in the MD trajectories further confirmed the stability of Macrolactin A bound state with 6LU7. In conclusion, this study showed that marine natural compound Macrolactin A could be an effective therapeutic inhibitor against SARS-CoV-2 protease (6LU7). Additional in vitro and in vivo validations are strongly needed to determine the efficacy and therapeutic dose of Macrolactin A in biological systems.
    Matched MeSH terms: Molecular Docking Simulation*
  8. Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S
    Biopolymers, 2020 Feb;111(2):e23337.
    PMID: 31691964 DOI: 10.1002/bip.23337
    The interaction between mefloquine (MEF), the antimalarial drug, and human serum albumin (HSA), the main carrier protein in blood circulation, was explored using fluorescence, absorption, and circular dichroism spectroscopic techniques. Quenching of HSA fluorescence with MEF was characterized as static quenching and thus confirmed the complex formation between MEF and HSA. Association constant values for MEF-HSA interaction were found to fall within the range of 3.79-5.73 × 104  M-1 at various temperatures (288, 298, and 308 K), which revealed moderate binding affinity. Hydrogen bonds and hydrophobic interactions were predicted to connect MEF and HSA together in the MEF-HSA complex, as deduced from the thermodynamic data (ΔS = +133.52 J mol-1 K-1 and ΔH = +13.09 kJ mol-1 ) of the binding reaction and molecular docking analysis. Three-dimensional fluorescence spectral analysis pointed out alterations in the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues of HSA consequent to the addition of MEF. Circular dichroic spectra of HSA in the wavelength ranges of 200-250 and 250-300 nm hinted smaller changes in the protein's secondary and tertiary structures, respectively, induced by MEF binding. Noncovalent conjugation of MEF to HSA bettered protein thermostability. Site marker competitive drug displacement results suggested HSA Sudlow's site I as the MEF binding site, which was also supported by molecular docking analysis.
    Matched MeSH terms: Molecular Docking Simulation*
  9. Barhoumi A, Ryachi K, Belghiti ME, Chafi M, Tounsi A, Syed A, et al.
    J Fluoresc, 2024 Jul;34(4):1913-1929.
    PMID: 37668770 DOI: 10.1007/s10895-023-03411-z
    Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide and linalool, have been applied using the DFT/B3LYP/6-311(d,p) method, activation, reaction energies and the reactivity indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the -OH group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as support; our outcome reveals that the -OH group creates an intramolecular hydrogen bond in the product P2, while in the product P3 will create a hydrogen bond with the silica gel which makes the two products P2 and P3 are very easy to separate by chromatography, this result is in excellent agreement with the Rf retention value. The study might provide a fundamental for developing natural anti-viral compound in promoting human health.
    Matched MeSH terms: Molecular Docking Simulation*
  10. Maksum IP, Rustaman R, Deawati Y, Rukayadi Y, Utami AR, Nafisa ZK
    J Mol Model, 2024 Jul 09;30(8):260.
    PMID: 38981921 DOI: 10.1007/s00894-024-06060-6
    CONTEXT: Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD.

    METHODS: Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.

    Matched MeSH terms: Molecular Docking Simulation*
  11. Salihu AS, Salleh WMNHW, Ogunwa TH
    Nat Prod Res, 2024 Jul;38(14):2516-2521.
    PMID: 36855270 DOI: 10.1080/14786419.2023.2184359
    The genus Knema Lour. is distributed mainly in Southeast Asian and widely used in folk medicine for treating diseases such as jaundice, chronic fever, and inflammation. The chemical composition, acetylcholinesterase inhibition, and molecular docking studies of essential oil from Knema hookeriana Warb. were investigated in this study. The essential oil was achieved through hydrodistillation and was characterised using gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The acetylcholinesterase inhibitory activity was evaluated using Ellman method while molecular docking studies were carried out using Autodock v.4.3.2. The results revealed that the essential oil examined consisted mainly of β-caryophyllene (26.2%), germacrene D (12.5%), δ-cadinene (9.2%), germacrene B (8.8%) and bicyclogermacrene (5.5%). The essential oil showed acetylcholinesterase activity with IC50 value of 70.5 µg/mL. The enzyme-ligand molecular docking study showed that β-caryophyllene and δ-cadinene exhibited good binding affinities towards AChE with docking scores -8.1 kcal/mol and -8.3 kcal/mol, respectively.
    Matched MeSH terms: Molecular Docking Simulation*
  12. Alananzeh WA, Al-Qattan MN, Ayipo YO, Mordi MN
    Mol Divers, 2024 Jun;28(3):1273-1289.
    PMID: 37133710 DOI: 10.1007/s11030-023-10655-1
    Manipulating intracellular signals by interaction with transmembranal G-protein-coupled receptors (GPCRs) is the way of action of more than 30% of available medicines. Designing molecules against GPCRs is most challenging due to their flexible binding orthosteric and allosteric pockets, a property that lead to different mode and extent of activation of intracellular mediators. Here, in the current study we aimed to design N-substituted tetrahydro-beta-carbolines (THβC's) targeting Mu Opioid Receptors (MORs). We performed ligand docking study for reference and designed compounds against active and inactive states of MOR, as well as the active state bound to intracellular mediator of Gi. The reference compounds include 40 known agonists and antagonists, while the designed compounds include 25,227 N-substituted THβC analogues. Out of the designed compounds, 15 compounds were comparatively having better extra precision (XP) Gscore and were analyzed for absorption, distribution, metabolism, and excretion-toxicity (ADMET) properties, drug-likness, and molecular dynamic (MD) simulation. The results showed that N-substituted tetrahydro-beta-carbolines with and without C6-methoxy group substitutions (THBC/6MTHBC) analogues of A1/B1 and A9/B9 have relatively acceptable affinity and within pocket-stability toward MOR compared to the reference compounds of morphine (agonist) and naloxone (antagonist). Moreover, the designed analogues interact with key residue within the binding pocket of Asp 147 that is reported to be involved in receptor activation. In conclusion, the designed THBC analogues represent a good starting point for designing opioid receptor ligands other than morphinan scaffold, that have good synthetic accessibility which promotes feasible structural manipulation to tailor pharmacological effects with minimal side effects.
    Matched MeSH terms: Molecular Docking Simulation*
  13. Saw KC, Ahmad Mokhtar AM, Ismail NI
    Trop Biomed, 2024 Jun 01;41(2):166-175.
    PMID: 39154269 DOI: 10.47665/tb.41.2.006
    Nsp1 in SARS-CoV-2 is a key protein that increases the virus's pathogenicity and virulence by binding to the host ribosome and blocks the 40S ribosomal subunit channel, which effectively impedes the mRNA translation as well as crippling the host immune system. Previous studies revealed that the N-terminal in Nsp1 is part and parcel of Nsp1 efficiency, and mutations in its core residues have weakened the protein's. This knowledge persuades us to carry out the in silico screening on plant compounds of Piper sarmentosum Roxb. against the five target residues which are Glu36, Glu37, Arg99, Arg124 and Lys125. Potential compounds were tested for their druggability. As a result, we identified five out of 112 compounds including stigmasterol, N-feruloyltyramine, beta-Sitosterol, 13-(1,3-benzodioxol-5-yl)- N-(2methylpropyl) trideca-2,4,12-trienamide and N-(2-methylpropyl) octadeca-2-4dienamide in Piper sarmentosum Roxb. as potential inhibitors for Nsp1. These compounds formed at least a hydrophobic, hydrogen bonding or π-cation interactions with the protein. Furthermore, SwissADME analysis and the number of bindings to the target residues suggest that N-feruloyltyramine is the ideal inhibitor candidate against SARS-CoV-2 at its N-terminal of Nsp1. Lastly, the interaction with N-feruloyltyramine increased flexibility in the loop regions of N-terminal Nsp1, especially residues 54 to 70, with residue 59 showing the highest fluctuation, potentially affecting the protein's stability and function due to the correlation between RMSF and protein function.
    Matched MeSH terms: Molecular Docking Simulation*
  14. Hamali MA, Roney M, Dubey A, Uddin MN, Zulkifli NA, Fasihi Mohd Aluwi MF, et al.
    Future Med Chem, 2024;16(23):2535-2546.
    PMID: 39530504 DOI: 10.1080/17568919.2024.2419353
    Aim: The biggest cause of cancer deaths globally was lung cancer. New cancer fighting drugs are needed due to the rising number of cancer patients and cancer cells' treatment resistance.Results: Two Cu(II) complexes, synthesized from ligands based on 2-aminomethyl benzimidazole and salicylaldehyde derivatives, were designed and evaluated for their effectiveness against A549 lung cancer. The compounds were subjected to computational calculation using Density Functional Theory (DFT) to gather information on their reactivity. Furthermore, molecular docking are utilized to simulate the interaction between the compound and the MPP-9 protein. The synthesis of the ligands and their Cu(II) metal complexes are efficient and straightforward. The complexation between copper atom and the ligand are in 1:1 ratio. The MTT assay of the compounds against A549 lung carcinoma reveals that the both Cu(II) complexes good cytotoxicity activity, in comparison to their respective ligands. The low HOMO-LUMO band gap based on the DFT calculation predicts the high reactivity of the compounds. Furthermore, the low binding energy and the numbers of interactions of the Cu(II) complexes with MMP-9 protein binding site coincide with the antiproliferative activity tested in vitro.Conclusion: The cytotoxicity studies performed for Cu(L1Br) are promising, indicating a good candidate for a future drug.
    Matched MeSH terms: Molecular Docking Simulation*
  15. Panicker CY, Varghese HT, Nayak PS, Narayana B, Sarojini BK, Fun HK, et al.
    PMID: 25863456 DOI: 10.1016/j.saa.2015.03.065
    FT-IR spectrum of (2E)-3-(3-nitrophenyl)-1-[4-piperidin-1-yl]prop-2-en-1-one was recorded and analyzed. The vibrational wavenumbers were computed using HF and DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign IR bands. Potential energy distribution was done using GAR2PED software. The geometrical parameters of the title compound are in agreement with the XRD results. NBO analysis, HOMO-LUMO, first and second hyperpolarizability and molecular electrostatic potential results are also reported. The possible electrophile attacking sites of the title molecule is identified using MEP surface plot study. Molecular docking results predicted the anti-leishmanic activity for the compound.
    Matched MeSH terms: Molecular Docking Simulation
  16. Anuar NFSK, Wahab RA, Huyop F, Amran SI, Hamid AAA, Halim KBA, et al.
    J Biomol Struct Dyn, 2021 Apr;39(6):2079-2091.
    PMID: 32174260 DOI: 10.1080/07391102.2020.1743364
    We previously reported on a mutant lipase KV1 (Mut-LipKV1) from Acinetobacter haemolyticus which optimal pH was raised from 8.0 to 11.0 after triple substitutions of surface aspartic acid (Asp) with lysine (Lys). Herein, this study further examined the Mut-LipKV1 by molecular docking, molecular dynamics (MD) simulations and molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) calculations to explore the structural requirements that participated in the effective binding of tributyrin and its catalytic triad (Ser165, Asp259 and His289) and identify detailed changes that occurred post mutation. Mut-LipKV1 bound favorably with tributyrin (-4.1 kcal/mol) and formed a single hydrogen bond with His289, at pH 9.0. Despite the incongruent docking analysis data, results of MD simulations showed configurations of both the tributyrin-Mut-LipKV1 (RMSD 0.3 nm; RMSF 0.05 - 0.3 nm) and the tributyrin-wildtype lipase KV1 (tributyrin-LipKV1) complexes (RMSD 0.35 nm; RMSF 0.05 - 0.4 nm) being comparably stable at pH 8.0. MM-PBSA analysis indicated that van der Waals interactions made the most contribution during the molecular binding process, with the Mut-LipKV1-tributyrin complex (-44.04 kcal/mol) showing relatively lower binding energy than LipKV1-tributyrin (-43.83 kcal/mol), at pH 12.0. All tributyrin-Mut-LipKV1 complexes displayed improved binding free energies over a broader pH range from 8.0 - 12.0, as compared to LipKV1-tributyrin. Future empirical works are thus, important to validate the improved alkaline-stability of Mut-LipKV1. In a nutshell, our research offered a considerable insight for further improving the alkaline tolerance of lipases.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation
  17. Dostani M, Kianfar AH, Mahmood WA, Dinari M, Farrokhpour H, Sabzalian MR, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2017 Jun 05;180:144-153.
    PMID: 28284160 DOI: 10.1016/j.saa.2017.02.047
    In this investigation, the structure of bidentate N,N-Schiff base ligand of vanillin, (E)-4-(((2-amino-5-nitrophenyl)imino)methyl)-2-methoxyphenol (HL) was determined by single crystal X-ray diffraction. The interaction of new [CuL2], [NiL2] and [VOL2] complexes with DNA and BSA was explored through UV-Vis and fluorescence spectroscopy. The electronic spectra changes displayed an isosbestic point for the complexes upon titration with DNA. The Kb values for the complexes [CuL2], [NiL2] and [VOL2] were 2.4×105, 1.9×105 and 4.2×104, respectively. [CuL2] complex was bound more toughly than [NiL2] and [VOL2] complexes. These complexes had a significant interaction with Bovine Serum Albumin (BSA) and the results demonstrated that the quenching mechanism was a static procedure. Also, the complexes interacted with BSA by more than one binding site (n>1). Finally, the theoretical studies were performed using the docking method to calculate the binding constants and recognize the binding site of the DNA and BSA with the complexes. The ligand and complexes including Ni2+, Cu2+ and VO2+ ions were colonized by fungal growth.
    Matched MeSH terms: Molecular Docking Simulation
  18. Nordin N, Khimani K, Abd Ghani MF
    Curr Drug Discov Technol, 2021;18(6):e010921191171.
    PMID: 33563198 DOI: 10.2174/1570163818666210204202426
    BACKGROUND: Anti-apoptotic protein BCL-XL plays a vital role in tumorigenesis and cancer chemotherapy resistance, resulting in a good target for cancer treatment. Understanding the function of BCL-XL has driven the progression of a new class of cancer drugs that can mimic its natural inhibitors, BH3-only proteins, to trigger apoptosis. This mimicking is initiated through acetogenins due to their excellent biological properties. Acetogenins, which can be isolated from Annonaceae plants, have a unique structure along with several oxygenated functionalities.

    OBJECTIVE: Based on their biological capability, various acetogenins were studied in the present study and compared alongside ABT-737 on molecular docking.

    METHODS: The docking simulation of acetogenins was performed using AutoDock Vina software.

    RESULTS: Our findings have shown eleven acetogenins-BCL-XL protein complex, namely, muricin B (2), muricin F (4), muricin H (6), muricin I (7), xylomaticin (9), annomontacin (12), annonacin (14), squamocin (15), squamostatin A (16), bullatacin (20) and annoreticulin (21) exhibited strong binding affinities lower than - 10.4 kcalmol-1 as compared to ABT-373-BCL-XL complex. Six hydrogen bonds along with hydrophobic interaction were detected on the complex of BCL-XL with muricin B (2), muricin G (5), corossolone (11), and isoannonacin-10-one A (18).

    CONCLUSION: These findings indicated that some acetogenins could represent a new potential BCLXL inhibitor that could mimic the BH3-only protein for the induction of apoptosis in cancer chemotherapy.

    Matched MeSH terms: Molecular Docking Simulation
  19. Abid O, Imran S, Taha M, Ismail NH, Jamil W, Kashif SM, et al.
    Mol Divers, 2021 May;25(2):995-1009.
    PMID: 32301032 DOI: 10.1007/s11030-020-10084-4
    The β-glucuronidase, a lysosomal enzyme, catalyzes the cleavage of glucuronosyl-O-bonds. Its inhibitors play a significant role in different medicinal therapies as they cause a decrease in carcinogen-induced colonic tumors by reducing the level of toxic substances present in the intestine. Among those inhibitors, bisindole derivatives had displayed promising β-glucuronidase inhibition activity. In the current study, hydrazone derivatives of bisindolymethane (1-30) were synthesized and evaluated for in vitro β-glucuronidase inhibitory activity. Twenty-eight analogs demonstrated better activity (IC50 = 0.50-46.5 µM) than standard D-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 µM). Compounds with hydroxyl group like 6 (0.60 ± 0.01 µM), 20 (1.50 ± 0.10 µM) and 25 (0.50 ± 0.01 µM) exhibited the most potent inhibitory activity, followed by analogs with fluorine 21 (3.50 ± 0.10 µM) and chlorine 23 (8.20 ± 0.20 µM) substituents. The presence of hydroxyl group at the aromatic side chain was observed as the main contributing factor in the inhibitory potential. From the docking studies, it was predicted that the active compounds can fit properly in the binding groove of the β-glucuronidase and displayed significant binding interactions with essential residues.
    Matched MeSH terms: Molecular Docking Simulation
  20. Shy TW, Gaurav A
    Cent Nerv Syst Agents Med Chem, 2021;21(3):195-204.
    PMID: 34970959 DOI: 10.2174/1871524922666211231115638
    AIM: The aim of the present study was to apply pharmacophore based virtual screening to a natural product database to identify potential PDE1B inhibitor lead compounds for neurodegenerative and neuropsychiatric disorders.

    BACKGROUND: Neurodegenerative and neuropsychiatric disorders are a major health burden globally. The existing therapies do not provide optimal relief and are associated with substantial adverse effects. This has resulted in a huge unmet medical need for newer and more effective therapies for these disorders. Phosphodiesterase (PDEs) enzymes have been identified as potential targets of drugs for neurodegenerative and neuropsychiatric disorders, and one of the subtypes, i.e., PDE1B, accounts for more than 90 % of total brain PDE activity associated with learning and memory process, making it an interesting drug target for the treatment of neurodegenerative disorders.

    OBJECTIVES: The present study has been conducted to identify potential PDE1B inhibitor lead compounds from the natural product database.

    METHODS: Ligand-based pharmacophore models were generated and validated; they were then employed for virtual screening of Universal Natural Products Database (UNPD) followed by docking with PDE1B to identify the best hit compound.

    RESULTS: Virtual screening led to the identification of 85 compounds which were then docked into the active site of PDE1B. Out of the 85 compounds, six showed a higher affinity for PDE1B than the standard PDE1B inhibitors. The top scoring compound was identified as Cedreprenone.

    CONCLUSION: Virtual screening of UNPD using Ligand based pharmacophore led to the identification of Cedreprenone, a potential new natural PDE1B inhibitor lead compound.

    Matched MeSH terms: Molecular Docking Simulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links