Displaying all 4 publications

Abstract:
Sort:
  1. Gopinath D, Menon RK, Banerjee M, Su Yuxiong R, Botelho MG, Johnson NW
    Crit Rev Oncol Hematol, 2019 Jul;139:31-40.
    PMID: 31112880 DOI: 10.1016/j.critrevonc.2019.04.018
    Imbalance within the resident bacterial community (dysbiosis), rather than the presence and activity of a single organism, has been proposed to be associated with, and to influence, the development and progression of various diseases; however, the existence and significance of dysbiosis in oral/oropharyngeal cancer is yet to be clearly established. A systematic search (conducted on 25/01/2018 and updated on 25/05/2018) was performed on three databases (Pubmed, Web of Science & Scopus) to identify studies employing culture-independent methods which investigated the bacterial community in oral/oropharyngeal cancer patients compared to control subjects. Of the 1546 texts screened, only fifteen publications met the pre-determined selection criteria. Data extracted from 731 cases and 809 controls overall, could not identify consistent enrichment of any particular taxon in oral/oropharyngeal cancers, although common taxa could be identified between studies. Six studies reported the enrichment of Fusobacteria in cancer at different taxonomic levels whereas four studies reported an increase in Parvimonas. Changes in microbial diversity remained inconclusive, with four studies showing a higher diversity in controls, three studies showing a higher diversity in tumors and three additional studies showing no difference between tumors and controls. Even though most studies identified a component of dysbiosis in oral/oropharyngeal cancer, methodological and analytical variations prevented a standardized summary, which highlights the necessity for studies of superior quality and magnitude employing standardized methodology and reporting. Indeed an holistic metagenomic approach is likely to be more meaningful, as is understanding of the overall metabolome, rather than a mere enumeration of the organisms present.
    Matched MeSH terms: Mouth Neoplasms/microbiology
  2. Mok SF, Karuthan C, Cheah YK, Ngeow WC, Rosnah Z, Yap SF, et al.
    Malays J Pathol, 2017 Apr;39(1):1-15.
    PMID: 28413200 MyJurnal
    The human oral microbiome has been known to show strong association with various oral diseases including oral cancer. This study attempts to characterize the community variations between normal, oral potentially malignant disorders (OPMD) and cancer associated microbiota using 16S rDNA sequencing. Swab samples were collected from three groups (normal, OPMD and oral cancer) with nine subjects from each group. Bacteria genomic DNA was isolated in which full length 16S rDNA were amplified and used for cloned library sequencing. 16S rDNA sequences were processed and analysed with MOTHUR. A core oral microbiome was identified consisting of Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes and Actinobacteria at the phylum level while Streptococcus, Veillonella, Gemella, Granulicatella, Neisseria, Haemophilus, Selenomonas, Fusobacterium, Leptotrichia, Prevotella, Porphyromonas and Lachnoanaerobaculum were detected at the genus level. Firmicutes and Streptococcus were the predominant phylum and genus respectively. Potential oral microbiome memberships unique to normal, OPMD and oral cancer oral cavities were also identified. Analysis of Molecular Variance (AMOVA) showed a significant difference between the normal and the cancer associated oral microbiota but not between the OPMD and the other two groups. However, 2D NMDS showed an overlapping of the OPMD associated oral microbiome between the normal and cancer groups. These findings indicated that oral microbes could be potential biomarkers to distinguish between normal, OPMD and cancer subjects.
    Matched MeSH terms: Mouth Neoplasms/microbiology*
  3. Gopinath D, Menon RK, Wie CC, Banerjee M, Panda S, Mandal D, et al.
    Sci Rep, 2021 01 13;11(1):1181.
    PMID: 33441939 DOI: 10.1038/s41598-020-80859-0
    Microbial dysbiosis has been implicated in the pathogenesis of oral cancer. We analyzed the compositional and metabolic profile of the bacteriome in three specific niches in oral cancer patients along with controls using 16SrRNA sequencing (Illumina Miseq) and DADA2 software. We found major differences between patients and control subjects. Bacterial communities associated with the tumor surface and deep paired tumor tissue differed significantly. Tumor surfaces carried elevated abundances of taxa belonging to genera Porphyromonas, Enterobacteriae, Neisseria, Streptococcus and Fusobacteria, whereas Prevotella, Treponema, Sphingomonas, Meiothermus and Mycoplasma genera were significantly more abundant in deep tissue. The most abundant microbial metabolic pathways were those related to fatty-acid biosynthesis, carbon metabolism and amino-acid metabolism on the tumor surface: carbohydrate metabolism and organic polymer degradation were elevated in tumor tissues. The bacteriome of saliva from patients with oral cancer differed significantly from paired tumor tissue in terms of community structure, however remained similar at taxonomic and metabolic levels except for elevated abundances of Streptococcus, Lactobacillus and Bacteroides, and acetoin-biosynthesis, respectively. These shifts to a pro-inflammatory profile are consistent with other studies suggesting oncogenic properties. Importantly, selection of the principal source of microbial DNA is key to ensure reliable, reproducible and comparable results in microbiome studies.
    Matched MeSH terms: Mouth Neoplasms/microbiology*
  4. Bakri MM, Cannon RD, Holmes AR, Rich AM
    J Oral Pathol Med, 2014 Oct;43(9):704-10.
    PMID: 24931506 DOI: 10.1111/jop.12193
    The aim of this study was to investigate the relationship between expression of Candida albicans alcohol dehydrogenases (ADH) genes in archival formalin-fixed paraffin-embedded (FFPE) samples from biopsies of leukoplakia.
    Matched MeSH terms: Mouth Neoplasms/microbiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links