Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Jayaraman A, Pettersson S
    EMBO Mol Med, 2023 Mar 08;15(3):e17324.
    PMID: 36843560 DOI: 10.15252/emmm.202217324
    Duchenne muscular dystrophy (DMD) is a devastating neuromuscular degenerative disease with no known cure to date. In recent years, the hypothesis of a "gut-muscle axis" has emerged suggesting that bidirectional communication between the gut microbiota and the muscular system regulates the muscular function and may be perturbed in several muscular disorders. In addition, the excessive consumption of sugar and of lipid-rich processed food products are factors that further aggravate the phenotype for such diseases and accelerate biological aging. However, these unhealthy microbiota profiles can be reversed by individualized dietary changes to not only alter the microbiota composition but also to reset the production of microbial metabolites known to trigger beneficial effects typically associated with prolonged health span. Two recent studies (in this issue of EMBO Mol Med) highlight the interesting potential of microbiota-informed next-generation dietary intervention programs to be considered in genetically linked muscle disorders like DMD.
    Matched MeSH terms: Muscle, Skeletal/metabolism
  2. Hong YH, Betik AC, McConell GK
    Exp Physiol, 2014 Dec 1;99(12):1569-73.
    PMID: 25192731 DOI: 10.1113/expphysiol.2014.079202
    Nitric oxide is produced within skeletal muscle fibres and has various functions in skeletal muscle. There is evidence that NO may be essential for normal increases in skeletal muscle glucose uptake during contraction/exercise. Although there have been some discrepant results, it has been consistently demonstrated that inhibition of NO synthase (NOS) attenuates the increase in skeletal muscle glucose uptake during contraction in mouse and rat muscle ex vivo, during in situ contraction in rats and during exercise in humans. The NO-mediated increase in skeletal muscle glucose uptake during contraction/exercise is probably due to the modulation of intramuscular signalling that ultimately increases glucose transporter 4 (GLUT4) translocation and is, surprisingly, independent of blood flow. In this review, we discuss the evidence for and against a role of NO in regulating skeletal muscle glucose uptake during contraction/exercise and outline the possible mechanism(s) involved. Emerging findings regarding the role of neuronal NOS mu (nNOSμ) in this process are also discussed.
    Matched MeSH terms: Muscle, Skeletal/metabolism*
  3. Khor SC, Abdul Karim N, Ngah WZ, Yusof YA, Makpol S
    Oxid Med Cell Longev, 2014;2014:914853.
    PMID: 25097722 DOI: 10.1155/2014/914853
    Sarcopenia is a geriatric syndrome that is characterized by gradual loss of muscle mass and strength with increasing age. Although the underlying mechanism is still unknown, the contribution of increased oxidative stress in advanced age has been recognized as one of the risk factors of sarcopenia. Thus, eliminating reactive oxygen species (ROS) can be a strategy to combat sarcopenia. In this review, we discuss the potential role of vitamin E in the prevention and treatment of sarcopenia. Vitamin E is a lipid soluble vitamin, with potent antioxidant properties and current evidence suggesting a role in the modulation of signaling pathways. Previous studies have shown its possible beneficial effects on aging and age-related diseases. Although there are evidences suggesting an association between vitamin E and muscle health, they are still inconclusive compared to other more extensively studied chronic diseases such as neurodegenerative diseases and cardiovascular diseases. Therefore, we reviewed the role of vitamin E and its potential protective mechanisms on muscle health based on previous and current in vitro and in vivo studies.
    Matched MeSH terms: Muscle, Skeletal/metabolism
  4. Ebrahimi M, Rajion MA, Goh YM, Sazili AQ
    J Anim Physiol Anim Nutr (Berl), 2012 Dec;96(6):962-9.
    PMID: 21848848 DOI: 10.1111/j.1439-0396.2011.01206.x
    The effects of different inclusion levels of oil palm fronds (OPF) on the fatty acid profile of the longissimus dorsi (LD), biceps femoris (BF) and infraspinatus (IS) muscle of goats fed for 100 days are described. Twenty-four individually housed Kacang crossbred male goats (averaged 21.7 ± 0.97 kg BW) were allocated to three groups receiving either a 100% concentrate control diet (CON), diet with 25% inclusion level of OPF (HAF) or a diet with 50% inclusion of OPF. The diets were adjusted to be isocaloric and isonitrogenous and fed at 3.0% of BW daily. Samples of LD, BF and IS muscles were taken at slaughter for the determination of fatty acid profiles. The total saturated fatty acids (SFA) in the LD and BF muscles of the OPF group were significantly (p 
    Matched MeSH terms: Muscle, Skeletal/metabolism
  5. Akolkar DB, Asaduzzaman M, Kinoshita S, Asakawa S, Watabe S
    Gene, 2016 Jan 1;575(1):21-8.
    PMID: 26297555 DOI: 10.1016/j.gene.2015.08.031
    Pax3 and Pax7 are the regulators and markers of muscle progenitors and satellite cells that contribute to the embryonic development and postembryonic growth of skeletal muscle in vertebrates, as well as to its repair and regeneration. However, information regarding them in vertebrate genome model, torafugu Takifugu rubripes, has remained unknown. Therefore, as an initial step, here we characterized Pax3 and Pax7 from torafugu and investigated their expression patterns during different developmental stages by RT-PCR. In silico analysis with the Fugu genome database (ver. 4.0) yielded two distinct genes each for Pax3 (Pax3a and Pax3b) and Pax7 (Pax7a and Pax7b). The 75th amino acid, glutamine (Gln75), from the N-terminus was replaced by proline in the paired box domain (PD) of Pax3a. One single cDNA clone encoding Pax3a had deletion of Gln75 in PD, suggesting the presence of alternatively spliced variants (Q+/Q-). This was further supported by identification of two adjacent alternative 3' splice acceptor sites which produce Pax3b Q+ (aagCAGGGA) and Q- (aagcagGGA) variants. Interestingly, torafugu Pax7a, but not Pax7b, had an insert encoding five amino acid residues (SGEAS) in a C-terminal region of PD in two out of three cDNA clones. Genomic analysis showed two alternate splice donor sites at exon 4 of Pax7a. In synteny analysis, torafugu Pax3a showed syntenic relationship with the corresponding regions in other teleosts only, whereas Pax3b and Pax7b showed high syntenic relationship with the corresponding regions of both mammals and other teleosts. RT-PCR revealed that expression of Pax3a and Pax3b transcripts was restricted to embryonic stages only, whereas those of Pax7a and Pax7b was continued to be expressed in larvae and importantly those of Pax7a were found in adult skeletal muscles. Therefore, Pax3 appears to be most important for primary myogenesis and Pax7 for secondary myogenesis and growth by hyperplasia in fish. In this regard, the transcripts of torafugu Pax3 and Pax7 genes might be used for further investigation as a marker for identification of muscle precursor cells during different phases of growth, and this ambiguity is the next target of our research.
    Matched MeSH terms: Muscle, Skeletal/metabolism*
  6. Abubakr A, Alimon AR, Yaakub H, Abdullah N, Ivan M
    PLoS One, 2015;10(3):e0119756.
    PMID: 25789610 DOI: 10.1371/journal.pone.0119756
    The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat.
    Matched MeSH terms: Muscle, Skeletal/metabolism*
  7. Hong YH, Yang C, Betik AC, Lee-Young RS, McConell GK
    Am J Physiol Endocrinol Metab, 2016 05 15;310(10):E838-45.
    PMID: 27006199 DOI: 10.1152/ajpendo.00513.2015
    Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ(+/+) and nNOSμ(-/-) mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ(+/+) and nNOSμ(-/-), respectively, P > 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ(-/-) mice, and exercise increased NOS activity only in nNOSμ(+/+) mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg(-1)·min(-1), P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ(-/-) than in nNOSμ(+/+) mice (P < 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ(-/-) mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ(-/-) mice may be due to compensatory increases in AMPK activation.
    Matched MeSH terms: Muscle, Skeletal/metabolism*
  8. Khong TK, Selvanayagam VS, Sidhu SK, Yusof A
    Scand J Med Sci Sports, 2017 Apr;27(4):376-384.
    PMID: 27714855 DOI: 10.1111/sms.12754
    Carbohydrate (CHO) depletion is linked to neuromuscular fatigue during exercise. While its role at peripheral level is relatively well understood, less is known about its impact centrally. The aim of this systematic review was to critically analyze the effects of CHO on central fatigue (CF) assessed by various neurophysiological techniques. Four databases were searched using PRISMA guidelines through February 2016. The inclusion criteria were: CHO as intervention against a placebo control, fatigue induced by prolonged exercise and assessed using neurophysiological measures [voluntary activation (VA), superimposed twitch (SIT), M-wave, electromyography], alongside maximal voluntary contraction (MVC). Seven papers were reviewed, where exercise duration lasted between 115 and 180 min. CHO improved exercise performance in three studies, whereby two of them attributed it to CF via attenuation of VA and SIT reductions, while the other indicated peripheral involvement via attenuation of M-wave reduction. Although a few studies suggest that CHO attenuates CF, data on its direct effects on neurophysiological outcome measures are limited and mixed. Generally, measures employed in these studies were inadequate to conclude central contribution to fatigue. Factors including the techniques used and the lack of controls render additional confounding factors to make definitive deductions. Future studies should employ consistent techniques and appropriate neurophysiological controls to distinguish CHO effect at central level. The use of pharmacological intervention should be incorporated to elucidate involvement of central mechanisms.
    Matched MeSH terms: Muscle, Skeletal/metabolism*
  9. Ambrose KK, Ishak T, Lian LH, Goh KJ, Wong KT, Ahmad-Annuar A, et al.
    Neurol India, 2017 5 11;65(3):512-517.
    PMID: 28488611 DOI: 10.4103/neuroindia.NI_237_16
    INTRODUCTION: MicroRNAs (miRNAs) are short RNA molecules of approximately 22 nucleotides that function as post-transcriptional regulators of gene expression. They are expressed in a tissue-specific manner and show different expression patterns in development and disease; hence, they can potentially act as disease-specific biomarkers. Several miRNAs have been shown to be deregulated in plasma and skeletal muscles of myotonic dystrophy type 1 (DM1) patients.

    METHODS: We evaluated the expression patterns of 11 candidate miRNAs using quantitative real-time PCR in whole blood (n = 10) and muscle biopsy samples (n = 9) of DM1 patients, and compared them to those of normal control samples (whole blood, n = 10; muscle, n = 9).

    RESULTS: In DM1 whole blood, miRNA-133a, -29b, and -33a were significantly upregulated, whereas miRNA-1, -133a, and -29c were significantly downregulated in the skeletal muscles compared to controls.

    CONCLUSIONS: Our findings align to those reported in other studies and point towards pathways that potentially contribute toward pathogenesis in DM1. However, the currently available data is not sufficient for these miRNAs to be made DM1-specific biomarkers because they seem to be common to many muscle pathologies. Hence, they lack specificity, but reinforce the need for further exploration of DM1 biomarkers.

    Matched MeSH terms: Muscle, Skeletal/metabolism*
  10. Chaosap C, Sitthigripong R, Sivapirunthep P, Pungsuk A, Adeyemi KD, Sazili AQ
    Food Chem, 2020 Aug 15;321:126677.
    PMID: 32247180 DOI: 10.1016/j.foodchem.2020.126677
    Myosin heavy chain (MHC) isoforms in goat muscles and their possible relationships with meat quality have not been fully elucidated. This study characterized the MHC isoforms in different caprine muscles using sodium dodecyl sulphate glycerol gel electrophoresis (SDS-GGE). The relationships between MHC isoforms, calpain systems and meat quality characteristics of different muscles in goats were examined. Four muscles, namely infraspinatus (IF), longissimus dorsi (LD), psoas major (PM) and supraspinatus (SS) were obtained from ten Boer crossbred bucks (7-10 months old; 26.5 ± 3.5 kg, BW). The percentages of MHC I, MHC IIa and MHC IIx in SS, IF, PM and LD were 47.2, 38.3, 32.1, 11.9; 28.0, 42.1, 33.0, 36.4; and 24.8, 19.6, 34.9 and 51.7, respectively. IF and SS had higher levels of calpastatin, total collagen and insoluble collagen contents than did PM and LD. PM had longer sarcomere length than did other muscles. LD had higher collagen solubility, troponin-T degradation products and glycogen content than did other muscles. These results infer that variable fiber-type composition could account partially for the differences in the physicochemical properties of goat muscles.
    Matched MeSH terms: Muscle, Skeletal/metabolism*
  11. Ip YK, Lim CK, Lee SL, Wong WP, Chew SF
    J Exp Biol, 2004 Aug;207(Pt 17):3015-23.
    PMID: 15277556
    The objective of this study was to determine the effects of feeding on the excretory nitrogen (N) metabolism of the giant mudskipper, Periophthalmodon schlosseri, with special emphasis on the role of urea synthesis in ammonia detoxification. The ammonia and urea excretion rates of P. schlosseri increased 1.70- and 1.92-fold, respectively, within the first 3 h after feeding on guppies. Simultaneously, there were significant decreases in ammonia levels in the plasma and the brain, and in urea contents in the muscle and liver, of P. schlosseri at 3 h post-feeding. Thus, it can be concluded that P. schlosseri was capable of unloading ammonia originally present in some of its tissues in anticipation of ammonia released from the catabolism of excess amino acids after feeding. Subsequently, there were significant increases in urea content in the muscle, liver and plasma (1.39-, 2.17- and 1.62-fold, respectively) at 6 h post-feeding, and the rate of urea synthesis apparently increased 5.8-fold between 3 h and 6 h. Increased urea synthesis might have occurred in the liver of P. schlosseri because the greatest increase in urea content was observed therein. The excess urea accumulated in the body at 6 h was completely excreted between 6 and 12 h, and the percentage of waste-N excreted as urea-N increased significantly to 26% during this period, but never exceeded 50%, the criterion for ureotely, meaning that P. schlosseri remained ammonotelic after feeding. By 24 h, 62.7% of the N ingested by P. schlosseri was excreted, out of which 22.6% was excreted as urea-N. This is the first report on the involvement of increased urea synthesis and excretion in defense against ammonia toxicity in the giant mudskipper, and our results suggest that an ample supply of energy resources, e.g. after feeding, is a prerequisite for the induction of urea synthesis. Together, increases in nitrogenous excretion and urea synthesis after feeding effectively prevented a postprandial surge of ammonia in the plasma of P. schlosseri as reported previously for other fish species. Consequently, contrary to previous reports, there were significant decreases in the ammonia content of the brain of P. schlosseri throughout the 24 h period post-feeding, accompanied by a significant decrease in brain glutamine content between 12 h and 24 h.
    Matched MeSH terms: Muscle, Skeletal/metabolism
  12. Faseleh Jahromi M, Wesam Altaher Y, Shokryazdan P, Ebrahimi R, Ebrahimi M, Idrus Z, et al.
    Int J Biometeorol, 2016 Jul;60(7):1099-110.
    PMID: 26593972 DOI: 10.1007/s00484-015-1103-x
    High ambient temperature is a major problem in commercial broiler production in the humid tropics because high producing broiler birds consume more feed, have higher metabolic activity, and thus higher body heat production. To evaluate the effects of two previously isolated potential probiotic strains (Lactobacillus pentosus ITA23 and Lactobacillus acidophilus ITA44) on broilers growing under heat stress condition, a total of 192 chicks were randomly allocated into four treatment groups of 48 chickens each as follows: CL, birds fed with basal diet raised in 24 °C; PL, birds fed with basal diet plus 0.1 % probiotic mixture raised in 24 °C; CH, birds fed with basal diet raised in 35 °C; and PH, birds fed with basal diet plus 0.1 % probiotic mixture raised in 35 °C. The effects of probiotic mixture on the performance, expression of nutrient absorption genes of the small intestine, volatile fatty acids (VFA) and microbial population of cecal contents, antioxidant capacity of liver, and fatty acid composition of breast muscle were investigated. Results showed that probiotic positively affected the final body weight under both temperature conditions (PL and PH groups) compared to their respective control groups (CL and CH). Probiotic supplementation numerically improved the average daily gain (ADG) under lower temperature, but significantly improved ADG under the higher temperature (P 
    Matched MeSH terms: Muscle, Skeletal/metabolism
  13. Ebrahimi M, Rajion MA, Meng GY, Soleimani Farjam A
    Biomed Res Int, 2014;2014:749341.
    PMID: 24719886 DOI: 10.1155/2014/749341
    In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n = 10 in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P < 0.05) in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression.
    Matched MeSH terms: Muscle, Skeletal/metabolism*
  14. Sow AY, Ismail A, Zulkifli SZ
    Bull Environ Contam Toxicol, 2013 Jul;91(1):6-12.
    PMID: 23666324 DOI: 10.1007/s00128-013-1009-4
    Livers and muscles of swamp eels (Monopterus albus) were analyzed for bioaccumulation of heavy metals during the plowing stage of a paddy cycle. Results showed heavy metals were bioaccumulated more highly in liver than muscle. Zinc (Zn) was the highest bioaccumulated metal in liver (98.5 ± 8.95 μg/g) and in muscle (48.8 ± 7.17 μg/g). The lowest bioaccumulated metals were cadmium (Cd) in liver (3.44 ± 2.42 μg/g) and copper (Cu) in muscle (0.65 ± 0.20 μg/g). In sediments, Zn was present at the highest mean concentration (52.7 ± 2.85 μg/g), while Cd had the lowest mean concentration (1.04 ± 0.24 μg/g). The biota-sediment accumulation factor (BSAF) for Cu, Zn, Cd and nickel (Ni) in liver tissue was greater than the corresponding BSAF for muscle tissue. For the three plowing stages, metal concentrations were significantly correlated between liver and muscle tissues in all cases, and between sediment and either liver or muscle in most cases. Mean measured metal concentrations in muscle tissue were below the maximum permissible limits established by Malaysian and U.S. governmental agencies, and were therefore regarded as safe for human consumption.
    Matched MeSH terms: Muscle, Skeletal/metabolism
  15. Lee SM, Wong WP, Hiong KC, Loong AM, Chew SF, Ip YK
    J. Exp. Zoolog. Part A Comp. Exp. Biol., 2006 Dec 1;305(12):995-1009.
    PMID: 17068799
    This study aimed to determine effects of 6-day progressive increase in salinity from 1 per thousand to 15 per thousand on nitrogen metabolism and excretion in the soft-shelled turtle, Pelodiscus sinensis. For turtles exposed to 15 per thousand water on day 6, the plasma osmolality and concentrations of Na+, Cl- and urea increased significantly, which presumably decreased the osmotic loss of water. Simultaneously, there were significant increases in contents of urea, certain free amino acids (FAAs) and water-soluble proteins that were involved in cell volume regulation in various tissues. There was an apparent increase in proteolysis, releasing FAAs as osmolytes. In addition, there might be an increase in catabolism of certain amino acids, producing more ammonia. The excess ammonia was retained as indicated by a significant decrease in the rate of ammonia excretion on day 4 in 15 per thousand water, and a major portion of it was converted to urea. The rate of urea synthesis increased 1.4-fold during the 6-day period, although the capacity of the hepatic ornithine urea cycle remained unchanged. Urea was retained for osmoregulation because there was a significant decrease in urea excretion on day 4. Increased protein degradation and urea synthesis implies greater metabolic demands, and indeed turtles exposed to 15 per thousand water had significantly higher O2 consumption rate than the freshwater (FW) control. When turtles were returned from 15 per thousand water to FW on day 7, there were significant increases in ammonia (probably released through increased amino acid catabolism) and urea excretion, confirming that FAAs and urea were retained for osmoregulatory purposes in brackish water.
    Matched MeSH terms: Muscle, Skeletal/metabolism
  16. Appukutty M, Radhakrishnan AK, Ramasamy K, Ramasamy R, Abdul Majeed AB, Noor MI, et al.
    BMC Res Notes, 2012;5:649.
    PMID: 23173926 DOI: 10.1186/1756-0500-5-649
    This study examined the effects of bovine colostrum on exercise -induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum) and each group had three subgroups (day 0, 21 and 42). Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle.
    Matched MeSH terms: Muscle, Skeletal/metabolism
  17. Adeyemi KD, Shittu RM, Sabow AB, Ebrahimi M, Sazili AQ
    PLoS One, 2016;11(5):e0154603.
    PMID: 27138001 DOI: 10.1371/journal.pone.0154603
    This study appraised the effects of dietary blend of 80% canola oil and 20% palm oil and postmortem ageing on oxidative stability, fatty acids and quality attributes of gluteus medius (GM) muscle in goats. Twenty-four Boer bucks were randomly allotted to diet supplemented with 0, 4 and 8% oil blend, fed for 100 days and slaughtered, and the GM muscle was subjected to a 7 d chill storage (4±1°C). Diet had no effect (P> 0.05) on the colour, drip loss, thiobarbituric acid-reactive substances (TBARS) value, free thiol, carbonyl, myoglobin and metmyoglobin contents, metmyoglobin reducing activity (MRA), antioxidant enzyme activities and abundance of myosin heavy chain (MHC) and actin in the GM muscle in goats. The meat from goats fed 4 and 8% oil blend had higher (P< 0.05) concentration of α and γ-tocopherol and abundance of troponin T compared with that from the control goats. The GM muscle from the oil-supplemented goats had lower (P< 0.05) concentration of C16:0 and greater (P< 0.05) concentration of C18:1n-9, C18:3n-3 and C20:5n-3 compared with that from the control goats. Nonetheless, diet did not affect (P< 0.05) the total fatty acid in the GM muscle in goats. Regardless of the diet, the free thiol and myoglobin contents, concentration of tocopherol and total carotenoids, MHC and MRA in the GM muscle decreased (P< 0.05) while carbonyl content, TBARS, drip loss and metmyoglobin content increased over storage. Dietary blend of 80% canola oil and 20% palm oil beneficially altered tissue lipids without hampering the oxidative stability of chevon.
    Matched MeSH terms: Muscle, Skeletal/metabolism*
  18. Megahed AA, Hiew MWH, Ragland D, Constable PD
    J Dairy Sci, 2019 Jun;102(6):5550-5565.
    PMID: 30954258 DOI: 10.3168/jds.2018-15063
    High-producing dairy cows experience a state of negative energy balance in the periparturient period that is partially addressed by increasing the rate of fat and protein mobilization. Previous studies have focused on the rate of fat mobilization, and consequently the rate of protein mobilization has not been well characterized. The objective of this study was therefore to determine the change in indicators of muscle mass during early lactation using ultrasonographic measurement of muscle thickness and changes in plasma creatinine concentration. The maximum thickness of the gluteus medius and longissimus dorsi muscles of 106 Holstein cows (34 primiparous, 72 multiparous) was determined ultrasonographically on d -3, 0, 3, 7, 14, 21, and 28 relative to the day of parturition. Plasma creatinine concentration was measured periodically during the same period. Mixed models analysis and Passing-Bablok regression were used to analyze the data. Gluteus medius thickness, longissimus dorsi loin thickness (LDLT), and longissimus dorsi thoracic thickness (LDTT) were decreased at 28 d postpartum compared with d 3 antepartum. Plasma creatinine concentration was weakly associated with gluteus medius thickness, LDLT, and LDTT (Spearman's rho = 0.31, 0.39, and 0.32, respectively). Plasma creatinine concentration in primiparous and multiparous cows at 28 d postpartum decreased by 0.24 and 0.30 mg/dL, respectively, compared with values 3 d antepartum. We concluded that ultrasonographic measurement of LDLT and LDTT and change in plasma creatinine concentration may provide practical methods for monitoring the rate of protein mobilization in periparturient dairy cows. Ultrasonographic examination of LDLT and LDTT therefore complements ultrasonographic measurement of backfat thickness and may be useful in the evaluation of energy reserve mobilization in periparturient dairy cows.
    Matched MeSH terms: Muscle, Skeletal/metabolism*
  19. Adeyemi KD, Sazili AQ, Ebrahimi M, Samsudin AA, Alimon AR, Karim R, et al.
    Anim Sci J, 2016 Sep;87(9):1137-47.
    PMID: 26582150 DOI: 10.1111/asj.12549
    The study examined the effects of blend of 80% canola oil and 20% palm oil (BCPO) on nutrient intake and digestibility, growth performance, rumen fermentation and fatty acids (FA) in goats. Twenty-four Boer bucks were randomly assigned to diets containing 0, 4 and 8% BCPO on a dry matter basis, fed for 100 days and slaughtered. Diet did not affect feed efficiency, growth performance, intake and digestibility of all nutrients except ether extract. Intakes and digestibilities of ether extract, unsaturated fatty acids (FA) and total FA were higher (P 
    Matched MeSH terms: Muscle, Skeletal/metabolism
  20. Osman WNW, Mohamed S
    Phytother Res, 2018 Oct;32(10):2078-2085.
    PMID: 29993148 DOI: 10.1002/ptr.6151
    The antifatigue properties of Morinda elliptica (ME) leaf were compared with Morinda citrifolia (MC) leaf extracts. Sixty Balb/C mice were administered (N = 10): control water, standardized green tea extract (positive control 200 mg/kg body weight [BW]), either 200 or 400 mg MC/kg BW, or either 200 or 400 mg ME/kg BW). The mice performances, biochemical, and mRNA expressions were evaluated. After 6 weeks, the weight-loaded swimming time to exhaustion in the mice consuming 400 mg MC/kg, were almost five times longer than the control mice. The gene expressions analysis suggested the extracts enhanced performance by improving lipid catabolism, carbohydrate metabolism, electron transport, antioxidant responses, energy production, and tissue glycogen stores. The MC and ME extracts enhanced stamina by reducing blood lactate and blood urea nitrogen levels, increasing liver and muscle glycogen reserve through augmenting the glucose metabolism (glucose transporter type 4 and pyruvate dehydrogenase kinase 4), lipid catabolism (acyl-Coenzyme A dehydrogenases and fatty acid translocase), antioxidant (superoxide dismutase 2) defence responses, electron transport (COX4I2), and energy production (PGC1α, NRF1, NRF2, cytochrome C electron transport, mitochondrial transcription factor A, UCP1, and UCP3) biomarkers. The MC (containing scopoletin and epicatechin) was better than ME (containing only scopoletin) or green tea (containing epicatechin and GT catechins) for alleviating fatigue.
    Matched MeSH terms: Muscle, Skeletal/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links