Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Ismail I, Joo ST
    Korean J Food Sci Anim Resour, 2017;37(6):873-883.
    PMID: 29725209 DOI: 10.5851/kosfa.2017.37.6.87
    Variations in the definition of poultry meat quality exist because the quality traits are not solely based on intrinsic and extrinsic factors but also consumers' preference. Appearance quality traits (AQT), eating quality traits (EQT), and reliance quality traits (RQT) are the major factors focused by the consumer before buying good quality of poultry meat. AQT and EQT of poultry meat are controlled by physical and biochemical characteristics of muscle fibers which can be categorized into a total number of fibers (TNF), cross-sectional area of fibers (CSAF), and fiber type composition (FTC). In poultry meat, it has been shown that muscle fiber properties play a key role in meat quality because numerous studies have reported the relationships between quality traits and fiber characteristics. Despite intensive research has been carried out to manipulate the muscle fiber to improve poultry meat quality, demand in a rapid growth of poultry muscle has correlated to the deterioration in the meat quality. The present paper reviews the definition of poultry meat quality, meat quality traits, and variations of meat quality. Also, this review presents recent knowledge underlying the relationship between poultry meat quality traits and muscle fiber characteristics.
    Matched MeSH terms: Muscle Fibers, Skeletal
  2. Wong KT, Dick D, Anderson JR
    Neuromuscul Disord, 1996 May;6(3):163-6.
    PMID: 8784803
    This report describes a 56-yr-old man with a dominantly inherited disorder affecting four generations and characterized by bilateral ptosis and dysphagia. Muscle biopsy showed only minor light microscopic abnormalities but electron microscopy revealed fibres containing paracrystalline mitochondrial inclusions. Southern analysis of mitochondrial DNA obtained from muscle did not reveal mitochondrial gene deletions. An extensive search eventually identified the characteristic intranuclear filaments of oculopharyngeal muscular dystrophy (OPMD). Abnormal mitochondria are non-specific epiphenomena in OPMD but a potential source of confusion with a late-onset mitochondrial cytopathy. This case further emphasizes the necessity for a diligent search for the diagnostic intranuclear filaments when oculopharyngeal muscular dystrophy is suspected clinically.
    Matched MeSH terms: Muscle Fibers, Skeletal/pathology; Muscle Fibers, Skeletal/ultrastructure
  3. Zainah Adam, Shafii Khamis, Amin Ismail, Muhajir Hamid
    MyJurnal
    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in
    Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose
    uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering
    effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity
    into muscle cells. The cells were incubated with Ficus deltoidea extracts either a,lone or combination
    with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-
    [l-:-Hj-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or
    insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose
    uptake at the low concentration (10 pg/ml) whereas methanolic extract enhanced basal glucose uptake
    at high concentrations (500 and 1000 fig/ml). Meanwhile, ethanolic extract enhanced glucose uptake at
    low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing
    glucose uptake into L6 muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by
    the phenolic compounds presence in the plant. This study had shown that Ficus deltoidea has the
    ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity
    of this plant.
    Matched MeSH terms: Muscle Fibers, Skeletal
  4. Selvaraja M, Che Ku Daud CKD, Abdul Jalil M, Md. Shah A, Amin Nordin S, Ahmad Bajari Z, et al.
    MyJurnal
    Joint involvement is common in systemic lupus erythematosus (SLE) patients, however, screening for joint specific autoantibodies in patients is not routinely performed. This may be due to the lack of known antigens and available tissue. The rat musculoskeletal tissue may be a suitable source of antigen to detect arthritic autoantibodies.
    Method: We tested plasma of SLE patients, with arthritis (N=9) and without arthritis (N=7) as well as plasma from normal individuals (N=7) on fresh sectioned tissue from rat plantar hind paw using indirect immunofluorescence method.
    Results: Binding of autoantibodies to striation in skeletal muscle cells in the tissue was clearly demonstrable in all samples from SLE with arthritis but not on slides incubated with plasma from normal or SLE without arthritis.
    Conclusion: Thus, rat plantar tissue may be suitable for detecting autoantibodies from SLE patients that may be involved in the pathogenesis of lupus arthritis.
    Matched MeSH terms: Muscle Fibers, Skeletal
  5. Razak AM, Khor SC, Jaafar F, Karim NA, Makpol S
    Genes Nutr, 2018;13:31.
    PMID: 30519366 DOI: 10.1186/s12263-018-0618-2
    Background: Several muscle-specific microRNAs (myomiRs) are differentially expressed during cellular senescence. However, the role of dietary compounds on myomiRs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF) on myomiRs and myogenic genes during differentiation of human myoblasts. Young and senescent human skeletal muscle myoblasts (HSMM) were treated with 50 μg/mL TRF for 24 h before and after inducing differentiation.

    Results: The fusion index and myotube surface area were higher (p 

    Matched MeSH terms: Muscle Fibers, Skeletal
  6. Harba MI, Teng LY
    Front Med Biol Eng, 1999;9(1):31-47.
    PMID: 10354908
    Cross-correlating two surface EMG signals detected at two different locations along the path of flow of action potential enables the measurement of the muscle fiber average conduction velocity in those active motor units monitored by the electrodes. The position of the peak of the cross-correlation function is the time delay between the two signals and hence the velocity may be deduced. The estimated velocity using this technique has been observed previously to depend on the location of the electrodes on the muscle surface. Different locations produced different estimates. In this paper we present a measurement system, analyze its inherent inaccuracies and use it for the purpose of investigating the reliability of measurement of conduction velocity from surface EMG. This system utilizes EMG signals detected at a number of locations on the biceps brachii, when under light tension, to look for any pattern of variations of velocity as a function of location and time. It consists of a multi-electrode unit and a set of eight parallel on-line correlators. The electrode unit and the parallel correlators ensure that these measurements are carried out under the same physical and physiological conditions of the muscle. Further, the same detected signals are used in different measurement configurations to try to understand the reasons behind the observed variations in the estimated velocity. The results obtained seem to suggest that there will always be an unpredictable random component superimposed on the estimated velocity, giving rise to differences between estimates at different locations and differences in estimates with time at the same location. Many factors contribute to this random component, such as the non-homogeneous medium between the muscle fibers and the electrodes, the non-parallel geometry and non-uniform conduction velocity of the fibers, and the physical and physiological conditions of the muscle. While it is not possible to remove this random component completely from the measurement, the user must be aware of its presence and how to reduce its effects.
    Matched MeSH terms: Muscle Fibers, Skeletal/physiology*
  7. Hasan MM, Madhavan P, Ahmad Noruddin NA, Lau WK, Ahmed QU, Arya A, et al.
    Pharm Biol, 2023 Dec;61(1):1135-1151.
    PMID: 37497554 DOI: 10.1080/13880209.2023.2230251
    CONTEXT: Arjunolic acid (AA) is a triterpenoid saponin found in Terminalia arjuna (Roxb.) Wight & Arn. (Combretaceae). It exerts cardiovascular protective effects as a phytomedicine. However, it is unclear how AA exerts the effects at the molecular level.

    OBJECTIVE: This study investigates the cardioprotective effects of arjunolic acid (AA) via MyD88-dependant TLR4 downstream signaling marker expression.

    MATERIALS AND METHODS: The MTT viability assay was used to assess the cytotoxicity of AA. LPS induced in vitro cardiovascular disease model was developed in H9C2 and C2C12 myotubes. The treatment groups were designed such as control (untreated), LPS control, positive control (LPS + pyrrolidine dithiocarbamate (PDTC)-25 µM), and treatment groups were co-treated with LPS and three concentrations of AA (50, 75, and 100 µM) for 24 h. The changes in the expression of TLR4 downstream signaling markers were evaluated through High Content Screening (HCS) and Western Blot (WB) analysis.

    RESULTS: After 24 h of co-treatment, the expression of TLR4, MyD88, MAPK, JNK, and NF-κB markers were upregulated significantly (2-6 times) in the LPS-treated groups compared to the untreated control in both HCS and WB experiments. Evidently, the HCS analysis revealed that MyD88, NF-κB, p38, and JNK were significantly downregulated in the H9C2 myotube in the AA treated groups. In HCS, the expression of NF-κB was downregulated in C2C12. Additionally, TLR4 expression was downregulated in both H9C2 and C2C12 myotubes in the WB experiment.

    DISCUSSION AND CONCLUSIONS: TLR4 marker expression in H9C2 and C2C12 myotubes was subsequently decreased by AA treatment, suggesting possible cardioprotective effects of AA.

    Matched MeSH terms: Muscle Fibers, Skeletal/metabolism
  8. Beh JE, Latip J, Abdullah MP, Ismail A, Hamid M
    J Ethnopharmacol, 2010 May 4;129(1):23-33.
    PMID: 20193753 DOI: 10.1016/j.jep.2010.02.009
    Insulin stimulates glucose uptake and promotes the translocation of glucose transporter 4 (Glut 4) to the plasma membrane on L6 myotubes. The aim of this study is to investigate affect of Scoparia dulcis Linn water extracts on glucose uptake activity and the Glut 4 translocation components (i.e., IRS-1, PI 3-kinase, PKB/Akt2, PKC and TC 10) in L6 myotubes compared to insulin.
    Matched MeSH terms: Muscle Fibers, Skeletal/drug effects*; Muscle Fibers, Skeletal/metabolism
  9. Abu Bakar MH, Tan JS
    Biomed Pharmacother, 2017 Sep;93:903-912.
    PMID: 28715871 DOI: 10.1016/j.biopha.2017.07.021
    Compelling evidences posited that high level of saturated fatty acid gives rise to mitochondrial dysfunction and inflammation in the development of insulin resistance in skeletal muscle. Celastrol is a pentacyclic triterpenoid derived from the root extracts of Tripterygium wilfordii that possesses potent anti-inflammatory properties in a number of animal models with metabolic diseases. However, the cellular mechanistic action of celastrol in alleviating obesity-induced insulin resistance in skeletal muscle remains largely unknown. Therefore, the present investigation evaluated the attributive properties of celastrol at different concentrations (10, 20, 30 and 40nM) on insulin resistance in C2C12 myotubes evoked by palmitate. We demonstrated that celastrol improved mitochondrial functions through significant enhancement of intracellular ATP content, mitochondrial membrane potential, citrate synthase activity and decrease of mitochondrial superoxide productions. Meanwhile, augmented mitochondrial DNA (mtDNA) content with suppressed DNA oxidative damage were observed following celastrol treatment. Celastrol significantly enhanced fatty acid oxidation rate and increased the level of tricarboxylic acid (TCA) cycle intermediates in palmitate-treated cells. Further analysis revealed that the improvement of glucose uptake activity in palmitate-loaded myotubes was partly mediated by celastrol via activation of PI3K-Akt insulin signaling pathway. Collectively, these findings provided evidence for the first time that the protection from palmitate-mediated insulin resistance in C2C12 myotubes by celastrol is likely associated with the improvement of mitochondrial functions-related metabolic activities.
    Matched MeSH terms: Muscle Fibers, Skeletal/drug effects; Muscle Fibers, Skeletal/physiology*
  10. Mitutsova V, Yeo WWY, Davaze R, Franckhauser C, Hani EH, Abdullah S, et al.
    Stem Cell Res Ther, 2017 04 18;8(1):86.
    PMID: 28420418 DOI: 10.1186/s13287-017-0539-9
    BACKGROUND: Pancreatic beta cells are unique effectors in the control of glucose homeostasis and their deficiency results in impaired insulin production leading to severe diabetic diseases. Here, we investigated the potential of a population of nonadherent muscle-derived stem cells (MDSC) from adult mouse muscle to differentiate in vitro into beta cells when transplanted as undifferentiated stem cells in vivo to compensate for beta-cell deficiency.

    RESULTS: In vitro, cultured MDSC spontaneously differentiated into insulin-expressing islet-like cell clusters as revealed using MDSC from transgenic mice expressing GFP or mCherry under the control of an insulin promoter. Differentiated clusters of beta-like cells co-expressed insulin with the transcription factors Pdx1, Nkx2.2, Nkx6.1, and MafA, and secreted significant levels of insulin in response to glucose challenges. In vivo, undifferentiated MDSC injected into streptozotocin (STZ)-treated mice engrafted within 48 h specifically to damaged pancreatic islets and were shown to differentiate and express insulin 10-12 days after injection. In addition, injection of MDSC into hyperglycemic diabetic mice reduced their blood glucose levels for 2-4 weeks.

    CONCLUSION: These data show that MDSC are capable of differentiating into mature pancreatic beta islet-like cells, not only upon culture in vitro, but also in vivo after systemic injection in STZ-induced diabetic mouse models. Being nonteratogenic, MDSC can be used directly by systemic injection, and this potential reveals a promising alternative avenue in stem cell-based treatment of beta-cell deficiencies.

    Matched MeSH terms: Muscle Fibers, Skeletal/cytology*; Muscle Fibers, Skeletal/metabolism
  11. Rayagiri SS, Ranaldi D, Raven A, Mohamad Azhar NIF, Lefebvre O, Zammit PS, et al.
    Nat Commun, 2018 03 14;9(1):1075.
    PMID: 29540680 DOI: 10.1038/s41467-018-03425-3
    A central question in stem cell biology is the relationship between stem cells and their niche. Although previous reports have uncovered how signaling molecules released by niche cells support stem cell function, the role of the extra-cellular matrix (ECM) within the niche is unclear. Here, we show that upon activation, skeletal muscle stem cells (satellite cells) induce local remodeling of the ECM and the deposition of laminin-α1 and laminin-α5 into the basal lamina of the satellite cell niche. Genetic ablation of laminin-α1, disruption of integrin-α6 signaling or blocking matrix metalloproteinase activity impairs satellite cell expansion and self-renewal. Collectively, our findings establish that remodeling of the ECM is an integral process of stem cell activity to support propagation and self-renewal, and may explain the effect laminin-α1-containing supports have on embryonic and adult stem cells, as well as the regenerative activity of exogenous laminin-111 therapy.
    Matched MeSH terms: Muscle Fibers, Skeletal/cytology; Muscle Fibers, Skeletal/metabolism
  12. Mohd Sahardi NFN, Jaafar F, Mad Nordin MF, Makpol S
    PMID: 32419792 DOI: 10.1155/2020/1787342
    Background: Ageing resulted in a progressive loss of muscle mass and strength. Increased oxidative stress in ageing affects the capacity of the myoblast to differentiate leading to impairment of muscle regeneration. Zingiber officinale Roscoe (ginger) has potential benefits in reversing muscle ageing due to its antioxidant property. This study aimed to determine the effect of ginger in the prevention of cellular senescence and promotion of muscle regeneration.

    Methods: Myoblast cells were cultured into young and senescent state before treated with different concentrations of ginger standardised extracts containing different concentrations of 6-gingerol and 6-shogaol. Analysis on cellular morphology and myogenic purity was carried out besides determination of SA-β-galactosidase expression and cell cycle profile. Myoblast differentiation was quantitated by determining the fusion index, maturation index, and myotube size.

    Results: Treatment with ginger extracts resulted in improvement of cellular morphology of senescent myoblasts which resembled the morphology of young myoblasts. Our results also showed that ginger treatment caused a significant reduction in SA-β-galactosidase expression on senescent myoblasts indicating prevention of cellular senescence, while cell cycle analysis showed a significant increase in the percentage of cells in the G0/G1 phase and reduction in the S-phase cells. Increased myoblast regenerative capacity was observed as shown by the increased number of nuclei per myotube, fusion index, and maturation index.

    Conclusions: Ginger extracts exerted their potency in promoting muscle regeneration as indicated by prevention of cellular senescence and promotion of myoblast regenerative capacity.

    Matched MeSH terms: Muscle Fibers, Skeletal
  13. David P, Subramaniam K
    PMID: 16228975
    Extensive research on prenatal alcohol exposure has proven the potent teratogenicity of this substance of abuse. Children born to alcoholic mothers are often diagnosed with fetal alcohol syndrome (FAS). Those afflicted with FAS often have muscle weakness, muscle wasting, and atrophy. This study assessed the effects of prenatal alcohol exposure on the developing rat neuromuscular system.
    Matched MeSH terms: Muscle Fibers, Skeletal/enzymology; Muscle Fibers, Skeletal/pathology
  14. Bala U, Leong MP, Lim CL, Shahar HK, Othman F, Lai MI, et al.
    PLoS One, 2018;13(5):e0197711.
    PMID: 29795634 DOI: 10.1371/journal.pone.0197711
    BACKGROUND: Down syndrome (DS) is a genetic disorder caused by presence of extra copy of human chromosome 21. It is characterised by several clinical phenotypes. Motor dysfunction due to hypotonia is commonly seen in individuals with DS and its etiology is yet unknown. Ts1Cje, which has a partial trisomy (Mmu16) homologous to Hsa21, is well reported to exhibit various typical neuropathological features seen in individuals with DS. This study investigated the role of skeletal muscles and peripheral nerve defects in contributing to muscle weakness in Ts1Cje mice.

    RESULTS: Assessment of the motor performance showed that, the forelimb grip strength was significantly (P<0.0001) greater in the WT mice compared to Ts1Cje mice regardless of gender. The average survival time of the WT mice during the hanging wire test was significantly (P<0.0001) greater compared to the Ts1Cje mice. Also, the WT mice performed significantly (P<0.05) better than the Ts1Cje mice in the latency to maintain a coordinated motor movement against the rotating rod. Adult Ts1Cje mice exhibited significantly (P<0.001) lower nerve conduction velocity compared with their aged matched WT mice. Further analysis showed a significantly (P<0.001) higher population of type I fibres in WT compared to Ts1Cje mice. Also, there was significantly (P<0.01) higher population of COX deficient fibres in Ts1Cje mice. Expression of Myf5 was significantly (P<0.05) reduced in triceps of Ts1Cje mice while MyoD expression was significantly (P<0.05) increased in quadriceps of Ts1Cje mice.

    CONCLUSION: Ts1Cje mice exhibited weaker muscle strength. The lower population of the type I fibres and higher population of COX deficient fibres in Ts1Cje mice may contribute to the muscle weakness seen in this mouse model for DS.

    Matched MeSH terms: Muscle Fibers, Skeletal/metabolism*; Muscle Fibers, Skeletal/pathology
  15. Zainudin S, Rajanthran SK, Azizan N, Hayati F, Ginawoi J, Suhaimi KA, et al.
    Oxf Med Case Reports, 2020 Oct;2020(10):omaa086.
    PMID: 33133619 DOI: 10.1093/omcr/omaa086
    Leiomyoma is a smooth muscle tumour that can arise in any part of the body especially the uterus. Even though it is traditionally linked with hormonal influence, it can also develop in extrauterine organs with a slight female predominance. It is indistinguishable with gastrointestinal stromal tumour (GIST) histologically. We report a case of a 30-year-old gentleman who presented with a huge painful mass in the right iliac fossa. Computed tomography revealed a 10 × 10 cm homogeneous mass arising from the terminal ileum; he subsequently underwent an open right hemicolectomy. Histology showed a well-circumscribed lesion composed of interlacing bundles of smooth muscle fibres of the submucosa with positive smooth muscle actin and H-Caldesmon stains but negative for DOG-1 and CD117 (c-kit) stains which were consistent with leiomyoma. Despite its rarity, this hormone-related tumour needs to be considered regardless of gender. Immunohistochemistry is paramount as it is histologically identical to GIST.
    Matched MeSH terms: Muscle Fibers, Skeletal
  16. Asaduzzaman M, Shakur Ahammad AK, Asakawa S, Kinoshita S, Watabe S
    PMID: 26335505 DOI: 10.1016/j.cbpb.2015.08.009
    In zebrafish, fast muscle-specific myosin heavy chain genes have their unique expression patterns in a well-defined and restricted region of the skeletal muscle. However, the transcriptional regulatory mechanisms involved have remained unclear. Here, we examined the regulation of spatio-temporal expression patterns of myhz1 (myhz1.1, myhz1.2 and myhz1.3) and myhz2 during their development by using transient gene and stable transgenic techniques. Embryos microinjected with different length 5'-flanking sequences of myhz1 conjugated with the enhanced green fluorescent protein (EGFP) gene showed EGFP expression in the anterior and medial subsections of somites, but not in the tail somite region. In contrast, embryos microinjected with different length 5'-flanking sequences of myhz2 showed EGFP expression exclusively at the posterior tail somite domain. Promoter deletion analyses demonstrated that reduced EGFP fluorescence typically is correlated with smaller 5'-flanking sequences. The immunohistochemical observation revealed that zebrafish larvae provided with the transient gene and those from stable transgenic lines consistently expressed EGFP in the fast muscle fibers. r-VISTA plot identified one common conserved region of about 140°bp among myhz1.1, myhz1.2 and myhz1.3. Deletion of this conserved region from the 5'-flanking sequence of each myhz1 markedly reduced EGFP expression in its unique spatial somite region. Deletion mutation analysis demonstrated that myhz2 expression in the tail somite region might be mediated by Tbx (family of transcription factors having a common DNA-binding sequence known as T-box) binding elements. In summary, 5'-flanking sequences of myhz1 and myhz2 regulate their unique expression patterns in a well-defined and restricted somite region of the skeletal muscle in zebrafish.
    Matched MeSH terms: Muscle Fibers, Skeletal
  17. Ahammad AKS, Asaduzzaman M, Uddin Ahmed MB, Akter S, Islam MS, Haque MM, et al.
    J Therm Biol, 2021 Feb;96:102830.
    PMID: 33627269 DOI: 10.1016/j.jtherbio.2020.102830
    Although indigenous climbing perch (Anabas testudineusis) is a highly valuable species, slow growth pattern during the culture period impeding its commercial success in aquaculture. In many fish species, it has been demonstrated that incubation temperature of eggs influenced the muscle development and growth rates, which persisted throughout the subsequent larval and juvenile phases. Therefore, this study aimed to investigate whether different incubation temperature of eggs prior to hatching can stimulate the muscle development, growth, and growth-related gene expression of the slow-growing indigenous species of climbing perch. The fertilized eggs of A. testudineus from an artificial breeding program were incubated under control temperature of 24 °C (IT24), 26 °C (IT26), 28 °C (IT28), and 30 °C (IT30) in 10L glass aquaria with four replicated units for each temperature treatment. After hatching, the larvae from each incubated temperature were separately reared at ambient temperature for 10 days in aquarium, 20 days in hapas, and the next 42 days in cages, totaling 72 days post-hatching (dph). The hatching rates were found significantly (P 
    Matched MeSH terms: Muscle Fibers, Skeletal
  18. Issac PK, Lite C, Guru A, Velayutham M, Kuppusamy G, Saraswathi NT, et al.
    Fish Physiol Biochem, 2021 Apr;47(2):293-311.
    PMID: 33394283 DOI: 10.1007/s10695-020-00912-7
    This study reports the antioxidant property and molecular mechanism of a tryptophan-tagged peptide derived from a teleost fish Channa striatus of serine threonine-protein kinase (STPK). The peptide was tagged with tryptophan to enhance the antioxidant property of STPK and named as IW13. The antioxidant activity of IW13 peptide was investigated using in vitro methods such as DPPH, ABTS, superoxide anion radical scavenging and hydrogen peroxide scavenging assay. Furthermore, to investigate the toxicity and dose response of IW13 peptide on antioxidant defence in vitro, L6 myotubes were induced with generic oxidative stress due to exposure of hydrogen peroxide (H2O2). IW13 peptide exposure was found to be non-cytotoxic to L6 cells in the tested concentration (10, 20, 30, 40 and 50 μM). Also, the pre-treatment of IW13 peptide decreased the lipid peroxidation level and increased glutathione enzyme activity. IW13 peptide treatment upregulated the antioxidant enzyme genes: GPx (glutathione peroxidase), GST (glutathione S transferase) and GCS (glutamine cysteine synthase), in vitro in L6 myotubes and in vivo in zebrafish larvae against the H2O2-induced oxidative stress. The results demonstrated that IW13 renders protection against the H2O2-induced oxidative stress through a cellular antioxidant defence mechanism by upregulating the gene expression, thus enhancing the antioxidant activity in the cellular or organismal level. The findings exhibited that the tryptophan-tagged IW13 peptide from STPK of C. striatus could be a promising candidate for the treatment of oxidative stress-associated diseases.
    Matched MeSH terms: Muscle Fibers, Skeletal
  19. Tan CM, Najib NAM, Suhaimi NF, Halid NA, Cho VV, Abdullah SI, et al.
    Arch Med Sci, 2021;17(3):752-763.
    PMID: 34025846 DOI: 10.5114/aoms.2019.85449
    Introduction: Replicative senescence results in dysregulation of cell proliferation and differentiation, which plays a role in the regenerative defects observed during age-related muscle atrophy. Vitamin E is a well-known antioxidant, which potentially ameliorates a wide range of age-related manifestations. The aim of this study was to determine the effects of tocotrienol-rich fraction (TRF) in modulating the expression of proliferation- and differentiation-associated proteins in senescent human myoblasts during the differentiation phase.

    Material and methods: Human skeletal muscle myoblasts were cultured until senescence. Young and senescent cells were treated with TRF for 24 h before and after differentiation induction, followed by evaluation of cellular morphology and efficiency of differentiation. Expression of cell proliferation marker Ki67 protein and myogenic regulatory factors MyoD and myogenin were determined.

    Results: Our findings showed that treatment with TRF significantly improved the morphology of senescent myoblasts. Promotion of differentiation was observed in young and senescent myoblasts with TRF treatment as shown by the increased fusion index and larger size of myotubes. Increased Ki67 and myogenin expression with TRF treatment was also observed in senescent myoblasts, suggesting amelioration of the myogenic program by TRF during replicative senescence.

    Conclusions: TRF modulates the expression of regulatory factors related to proliferation and differentiation in senescent human myoblasts and could be beneficial for ameliorating the regenerative defects during aging.

    Matched MeSH terms: Muscle Fibers, Skeletal
  20. Zainul Azlan N, Mohd Yusof YA, Alias E, Makpol S
    PMID: 31428175 DOI: 10.1155/2019/8394648
    Background: Loss of skeletal muscle mass, strength, and function due to gradual decline in the regeneration of skeletal muscle fibers was observed with advancing age. This condition is known as sarcopenia. Myogenic regulatory factors (MRFs) are essential in muscle regeneration as its activation leads to the differentiation of myoblasts to myofibers. Chlorella vulgaris is a coccoid green eukaryotic microalga that contains highly nutritious substances and has been reported for its pharmaceutical effects. The aim of this study was to determine the effect of C. vulgaris on the regulation of MRFs and myomiRs expression in young and senescent myoblasts during differentiation in vitro.

    Methods: Human skeletal muscle myoblast (HSMM) cells were cultured and serial passaging was carried out to obtain young and senescent cells. The cells were then treated with C. vulgaris followed by differentiation induction. The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, PTEN, and MYH2 genes and miR-133b, miR-206, and miR-486 was determined in untreated and C. vulgaris-treated myoblasts on Days 0, 1, 3, 5, and 7 of differentiation.

    Results: The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, and PTEN in control senescent myoblasts was significantly decreased on Day 0 of differentiation (p<0.05). Treatment with C. vulgaris upregulated Pax7, Myf5, MEF2C, IGF1R, MYOG, and PTEN in senescent myoblasts (p<0.05) and upregulated Pax7 and MYOG in young myoblasts (p<0.05). The expression of MyoD1 and Myf5 in young myoblasts however was significantly decreased on Day 0 of differentiation (p<0.05). During differentiation, the expression of these genes was increased with C. vulgaris treatment. Further analysis on myomiRs expression showed that miR-133b, miR-206, and miR-486 were significantly downregulated in senescent myoblasts on Day 0 of differentiation which was upregulated by C. vulgaris treatment (p<0.05). During differentiation, the expression of miR-133b and miR-206 was significantly increased with C. vulgaris treatment in both young and senescent myoblasts (p<0.05). However, no significant change was observed on the expression of miR-486 with C. vulgaris treatment.

    Conclusions: C. vulgaris demonstrated the modulatory effects on the expression of MRFs and myomiRs during proliferation and differentiation of myoblasts in culture. These findings may indicate the beneficial effect of C. vulgaris in muscle regeneration during ageing thus may prevent sarcopenia in the elderly.

    Matched MeSH terms: Muscle Fibers, Skeletal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links