Displaying all 6 publications

Abstract:
Sort:
  1. Yeh-Siang L, Subramaniam G, Hadi AH, Murugan D, Mustafa MR
    Molecules, 2011 Apr 06;16(4):2990-3000.
    PMID: 21471938 DOI: 10.3390/molecules16042990
    Generation of reactive oxygen species plays a pivotal role in the development of cardiovascular diseases. The present study describes the effects of the methanolic extract of Phoebe grandis (MPG) stem bark on reactive oxygen species-induced endothelial dysfunction in vitro. Endothelium-dependent (acetylcholine, ACh) and -independent relaxation (sodium nitroprusside, SNP) was investigated from isolated rat aorta of Sprague-Dawley (SD) in the presence of the β-NADH (enzymatic superoxide inducer) and MPG extract. Superoxide anion production in aortic vessels was measured by lucigen chemiluminesence. Thirty minutes incubation of the rat aorta in vitro with β-NADH increased superoxide radical production and significantly inhibited ACh-induced relaxations. Pretreatment with MPG (0.5, 5 and 50 μg/mL) restored the ACh-induced relaxations (R(max): 92.29% ± 2.93, 91.02% ± 4.54 and 88.31 ± 2.36, respectively) in the presence of β-NADH. MPG was ineffective in reversing the impaired ACh-induced relaxations caused by pyrogallol, a non-enzymatic superoxide generator. Superoxide dismutase (a superoxide scavenger), however, reversed the impaired ACh relaxations induced by both β-NADH and pyrogallol. MPG also markedly inhibited the β-NADH-induced generation of the superoxide radicals. Furthermore, MPG scavenging peroxyl radicals generated by tBuOOH (10⁻⁴ M).These results indicate that MPG may improve the endothelium dependent relaxations to ACh through its scavenging activity as well as by inhibiting the NADH/NADPH oxidase induced generation of superoxide anions.
    Matched MeSH terms: Muscle Relaxation/drug effects
  2. Tan HM
    Int. J. Androl., 2000;23 Suppl 2:87-8.
    PMID: 10849506
    The quest for improving and maintaining sexual function has been going on since time immemorial. The advent of an effective oral drug, sildenafil, has brought about unprecedented open discussion on male erectile dysfunction, and gas accelerated the pace of development of new therapies for erectile dysfunction. New knowledge in the physiology of sexual function has enabled researchers to target drug treatment at the whole network of the central nervous system and the numerous cascadic enzymatic reactions leading to relaxation of the corporal smooth muscle. One of the brightest potential applications of future molecular technology in the study of erectile dysfuction is in the utilization of gene therapy.
    Matched MeSH terms: Muscle Relaxation/drug effects
  3. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Diabetes Res Clin Pract, 2006 Jul;73(1):1-7.
    PMID: 16378655 DOI: 10.1016/j.diabres.2005.11.004
    The present work examined ex vivo the acute effect of quercetin on diabetic rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the alpha(1)-adrenergic agonist phenylephrine (PE). Responses were compared to those of aortic rings from age- and sex-matched euglycemic rats. Compared to euglycemic rat aortic rings, diabetic rings showed less relaxation in response to ACh and SNP, and greater contraction in response to PE. Pretreatment with quercetin (10microM, 20min) increased ACh-induced relaxation and decreased PE-induced contraction in diabetic, but did not affect euglycemic rat aortic ring responses. Following pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME, 10microM), quercetin reduced PE-induced contractions in both aortic ring types, although l-NAME attenuated the reduction in the diabetic rings. Quercetin did not alter SNP vasodilatory effects in either ring type compared to their respective controls. These findings indicate that quercetin acutely improved vascular responsiveness in blood vessels from diabetic rats, and that these effects were mediated, at least in part, by enhanced endothelial nitric oxide bioavailability. These effects of quercetin suggest the possible beneficial effects of quercetin in vivo in experimental diabetes and possibly in other cardiovascular diseases.
    Matched MeSH terms: Muscle Relaxation/drug effects
  4. Tee BH, Hoe SZ, Cheah SH, Lam SK
    Med Princ Pract, 2017;26(3):258-265.
    PMID: 28226311 DOI: 10.1159/000464363
    OBJECTIVE: This study was conducted to investigate the mechanisms of action of Eurycoma longifolia in rat corpus cavernosum.

    MATERIALS AND METHODS: Tincture of the roots was concentrated to dryness by evaporating the ethanol in vacuo. This ethanolic extract was partitioned into 5 fractions sequentially with hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The corpus cavernosum relaxant activity of each fraction was investigated. The DCM fraction which showed the highest potency in relaxing phenylephrine-precontracted corpora cavernosa was purified by column chromatography. The effects of the most potent DCM subfraction in relaxing phenylephrine-precontracted corpora cavernosa, DCM-I, on angiotensin I- or angiotensin II-induced contractions in corpora cavernosa were investigated. The effects of DCM-I pretreatment on the responses of phenylephrine-precontracted corpora cavernosa to angiotensin II or bradykinin were also studied. An in vitro assay was conducted to evaluate the effect of DCM-I on angiotensin-converting enzyme activity.

    RESULTS: Fraction DCM-I decreased the maximal contractions (100%) evoked by angiotensin I and angiotensin II to 30 ± 14% and 26 ± 16% (p < 0.001), respectively. In phenylephrine-precontracted corpora cavernosa, DCM-I pretreatment caused angiotensin II to induce 82 ± 27% relaxation of maximal contraction (p < 0.01) and enhanced (p < 0.001) bradykinin-induced relaxations from 47 ± 8% to 100 ± 5%. In vitro, DCM-I was able to reduce (p < 0.001) the maximal angiotensin-converting enzyme activity to 78 ± 0.24%.

    CONCLUSION: Fraction DCM-I was able to antagonize angiotensin II-induced contraction to cause corpus cavernosum relaxation via inhibition of angiotensin II type 1 receptor and enhance bradykinin-induced relaxation through inhibition of angiotensin-converting enzyme.

    Matched MeSH terms: Muscle Relaxation/drug effects
  5. Ajay M, Gilani AU, Mustafa MR
    Life Sci, 2003 Dec 19;74(5):603-12.
    PMID: 14623031
    The potency, structure-activity relationship, and mechanism of vasorelaxation of a series of flavonoids, representing different subclasses (flavonols: fisetin, rutin, quercetin; flavones: chrysin, flavone, baicalein; flavanones: naringenin, naringin; isoflavones: diadzein and flavanes: epigallo catechin gallate), were examined in the isolated rat aorta. Most of the flavonoids tested showed concentration dependent relaxant effects against K+ (80 mM) and phenylephrine (PE, 0.1 microM)-induced contractions with a greater inhibition of the responses to the alpha1-adrenoceptor agonist. The relaxant effects of most of the flavonoids involve in part the release of nitric oxide and prostaglandins from the endothelium as pretreatment with L-NAME and indomethacin attenuated the responses. In addition, the relaxant action of the flavonoids includes inhibition of Ca+2 influx and release of Ca+2 from intracellular stores. A structure-activity relationship amongst the flavonoids was suggested.
    Matched MeSH terms: Muscle Relaxation/drug effects
  6. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Clin Exp Pharmacol Physiol, 2006 Apr;33(4):345-50.
    PMID: 16620299
    1. There is a growing interest in the anti-oxidant characteristics and use of flavonoids in the management of cardiovascular diseases. The cardiovascular mechanism of action of these plant derivatives remains controversial. This study compared the effects of the flavonoid quercetin with those of the anti-oxidant vitamin ascorbic acid (vitamin C) on the reactivity of aortic rings from spontaneously hypertensive rats (SHR). 2. The phenylephrine (PE)-induced contractile and the endothelium-dependent and independent relaxant responses of aortic rings from 21 to 22 week old SHR and age-matched normotensive Wistar (WKY) rats were observed in the presence of quercetin or ascorbic acid. All the experiments were performed in the presence of the cyclooxygenase inhibitor, indomethacin (10 micromol/L). 3. The endothelium-dependent and independent relaxations to acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were significantly lesser in the SHR compared to the WKY tissues whereas the contractile responses to PE were similar in both tissues. Pretreatment of WKY rings with quercetin or ascorbic acid had no effect on the responses to ACh or PE. In the SHR tissues, however, quercetin or ascorbic acid significantly improved the relaxation responses to ACh and reduced the contractions to PE with greater potency for quercetin. Both compounds lacked any effects on the responses to SNP in either aortic ring types. N(omega)-nitro-L-arginine methyl ester (l-NAME, 10 micromol/L) significantly attenuated the vasodepressor effects of quercetin and ascorbic acid, raising the responses to PE to a level similar to that observed in the control SHR tissues. In l-NAME pretreated aortic rings, quercetin and ascorbic acid inhibited the contractile responses to PE with the same magnitude in WKY and SHR tissues. 4. The present results suggest that acute exposure to quercetin improves endothelium-dependent relaxation and reduces the contractile responses of hypertensive aortae with a greater potency than ascorbic acid. This suggests a better vascular protection with this flavonoid than ascorbic acid in the SHR model of hypertension and possibly in human cardiovascular diseases.
    Matched MeSH terms: Muscle Relaxation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links