Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Schumacher FR, Olama AAA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2019 02;51(2):363.
    PMID: 30622367 DOI: 10.1038/s41588-018-0330-6
    In the version of this article initially published, the name of author Manuela Gago-Dominguez was misspelled as Manuela Gago Dominguez. The error has been corrected in the HTML and PDF version of the article.
    Matched MeSH terms: Names
  2. Yusuf A, Mamun ASMA, Kamruzzaman M, Saw A, Abo El-Fetoh NM, Lestrel PE, et al.
    BMC Pediatr, 2019 Jul 26;19(1):258.
    PMID: 31349810 DOI: 10.1186/s12887-019-1607-3
    Following publication of the original article [1], the authors reported that name that appeared in published online version is incorrect.
    Matched MeSH terms: Names
  3. Sundararajan V, Sarkar FH, Ramasamy TS
    Cell Oncol (Dordr), 2018 08;41(4):463.
    PMID: 30047093 DOI: 10.1007/s13402-018-0396-2
    In the title of above mentioned article the word 'versatile' had been replaced by 'multifaceted'.
    Matched MeSH terms: Names
  4. Mohd Bakri Adam, Babangida Ibrahim Babura, Kathiresan Gopal
    MATEMATIKA, 2018;34(2):187-204.
    MyJurnal
    The box plot has been used for a very long time since 70s in checking the existence
    of outliers and the asymmetrical shape of data. The existing box plot is constructed
    using five values of statistics calculated from either the discrete or continous data. Many
    improvement of box plots have deviated from the elegant and simplier approach of exploratory
    data analysis by incorporating many other statistic values resulting the turning
    back of the noble philosophy behind the creation of box plot. The modification using
    range value with the minimum and maximum values are being incorporated to suit the
    need of selected discrete distribution when outliers is not an important criteria anymore.
    The new modification of box plot is not based on the asymmetrical shape of distribution
    but more on the spreading and partitioning data into range measure. The new propose
    name for the box plot with only three values of statistics is called range-box plot.
    Matched MeSH terms: Names
  5. Asiri AM, Faidallah HM, Sobahi TR, Ng SW, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Nov 1;71(Pt 11):e4.
    PMID: 26617187 DOI: 10.1107/S2056989015019271
    In the paper by Asiri et al. [Acta Cryst. (2012), E68, o1154], the title and the chemical name of one of the reagents used in the synthesis are corrected.[This corrects the article DOI: 10.1107/S1600536812011579.].
    Matched MeSH terms: Names
  6. McLeod M, Francis K
    Contemp Nurse, 2007 7 12;25(1-2):104-13.
    PMID: 17622994
    This paper explores the use of pseudonyms in a historical study that weaves oral testimony throughout the narrative. The research was undertaken to unveil the experiences of Australian Army nurses in Malaya's Communist insurgency (1948-1960). Thirty-three women from the Royal Australian Army Nursing Corps served in this conflict termed the Malayan Emergency, but only four nurses could be located for this study. After almost fifty years of silence the female nursing voice emerged as the informants spoke at interview of their unique personal and military experiences in Malaya. It is acknowledged that assigning the nurse informants pseudonyms, as opposed to using their names, constitutes a significant deviation from the established traditions of oral history. However, it is argued that the use of pseudonyms provided an opportunity for candid disclosure by the nurses on a range of topics whilst keeping the informants safe from adverse public or military scrutiny.
    Matched MeSH terms: Names*
  7. Eltyeb S, Salim N
    J Cheminform, 2014;6:17.
    PMID: 24834132 DOI: 10.1186/1758-2946-6-17
    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to "text mine" these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.
    Matched MeSH terms: Names
  8. Shanmuga Sundara Raj S, Yamin BM, Yussof YA, Tarafder MT, Fun HK, Grouse KA
    Acta Crystallogr C, 2000 Oct;56 (Pt 10):1236-7.
    PMID: 11025309
    In the crystal structure of the title compound, C(8)H(10)N(2)S(2), the molecules are linked by N-H.S hydrogen bonds between the imino group and the thione-S atoms to form a chain along the b axis. The dithiocarbazate moiety is rotated by 85.8 (2) degrees with respect to the phenyl ring.
    Matched MeSH terms: Names
  9. Usman A, Razak IA, Chantrapromma S, Fun HK, Sreekanth A, Sivakumar S, et al.
    Acta Crystallogr C, 2002 Sep;58(Pt 9):m461-3.
    PMID: 12205370
    One half of the molecule of the title complex, [Mn(C(14)H(13)N(4)S)(2)], is related to the other half by a twofold axis passing through the Mn atom. This high-spin Mn atom is six-coordinated, in an octahedral geometry, by the azomethine N, the pyridyl N and the thiolate S atom of two planar 1-(pyridin-2-yl)ethanone N(4)-phenylthiosemicarbazone ligands. In the crystal, the molecules are interconnected by N-H.S and C-H.N interactions, forming a three-dimensional network.
    Matched MeSH terms: Names
  10. Shanmuga Sundara Raj S, Fun HK, Lu ZL, Xiao W, Gong XY, Gen CM
    Acta Crystallogr C, 2000 Aug;56 (Pt 8):1015-6.
    PMID: 10944310
    The whole molecule of the title compound, C(19)H(14)N(4)O(2), is essentially planar, with a highly conjugated pi system. In the crystal, the molecules are packed as chains along the [011] direction connected by O-H.N intermolecular hydrogen bonds.
    Matched MeSH terms: Names
  11. Kang I, Long KD, Sharkey MJ, Whitfield JB, Lord NP
    Zookeys, 2020;971:1-15.
    PMID: 33061770 DOI: 10.3897/zookeys.971.56571
    For the first time in 21 years, a new genus of cardiochiline braconid wasp, Orientocardiochiles Kang & Long, gen. nov. (type species Orientocardiochiles joeburrowi Kang, sp. nov.), is discovered and described. This genus represents the ninth genus in the Oriental region. Two new species (O. joeburrowi Kang, sp. nov. and O. nigrofasciatus Long, sp. nov.) are described and illustrated, and a key to species of the genus, with detailed images, is added. Diagnostic characters of the new genus are analyzed and compared with several other cardiochiline genera to allow the genus to key out properly using an existing generic treatment. The scientific names validated by this paper and morphological data obtained from this project will be utilized and tested in the upcoming genus-level revision of the subfamily based on combined morphological and molecular data.
    Matched MeSH terms: Names
  12. Tan YJ, Yeo CI, Halcovitch NR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):493-499.
    PMID: 28435705 DOI: 10.1107/S205698901700353X
    The title compound, (C6H11)3PS (systematic name: tri-cyclo-hexyl-λ(5)-phosphane-thione), is a triclinic (P-1, Z' = 1) polymorph of the previously reported ortho-rhom-bic form (Pnma, Z' = 1/2) [Kerr et al. (1977 ▸). Can. J. Chem. 55, 3081-3085; Reibenspies et al. (1996 ▸). Z. Kristallogr. 211, 400]. While conformational differences exist between the non-symmetric mol-ecule in the triclinic polymorph, cf. the mirror-symmetric mol-ecule in the ortho-rhom-bic form, these differences are not chemically significant. The major feature of the mol-ecular packing in the triclinic polymorph is the formation of linear chains along the a axis sustained by methine-C-H⋯S(thione) inter-actions. The chains pack with no directional inter-actions between them. The analysis of the Hirshfeld surface for both polymorphs indicates a high degree of similarity, being dominated by H⋯H (ca 90%) and S⋯H/H⋯S contacts.
    Matched MeSH terms: Names
  13. Zukerman-Schpector J, Olivato PR, Traesel HJ, Valença J, Rodrigues DN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):o3-4.
    PMID: 25705490 DOI: 10.1107/S205698901402550X
    In the title β-thio-carbonyl compound, C16H16O2S, the carbonyl and meth-oxy O atoms are approximately coplanar [O-C-C-O torsion angle = -18.2 (5)°] and syn to each other, and the tolyl ring is orientated to lie over them. The dihedral angle between the planes of the two rings is 44.03 (16)°. In the crystal, supra-molecular chains are formed along the c axis mediated by C-H⋯O inter-actions involving methine and methyl H atoms as donors, with the carbonyl O atom accepting both bonds; these pack with no specific inter-molecular inter-actions between them.
    Matched MeSH terms: Names
  14. Ismail, Saimy B.
    JUMMEC, 2007;10(2):1-2.
    MyJurnal
    Leadership and management in health organisations are essential and frequent topics of discussion among professionals and other staff, who are directly or indirectly involved with the operation of the said organisations. In a hospital setting for example, managers are appointed at different functional or unit levels. Though more often than not, we refer to them as the heads or managers or by any other names, the leadership component might be assumed to be just part but not the most important aspect of their roles.(Copied from article).
    Matched MeSH terms: Names
  15. Ahmed BS, Sahib MA, Gambardella LM, Afzal W, Zamli KZ
    PLoS One, 2016;11(11):e0166150.
    PMID: 27829025 DOI: 10.1371/journal.pone.0166150
    Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations). Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO), Proportional-Integral-Derivative (PID) parameter design controller, named as FOPID, for an automatic voltage regulator (AVR) system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly.
    Matched MeSH terms: Names
  16. Harris N P
    Malays Fam Physician, 2009;4(1):6-7.
    Note by TCL: The Rajakumar Movement is the Wonca Asia Pacific Region Working Party for Young and Future Family Doctors. It was named in honour of Dr M K Rajakumar.
    Matched MeSH terms: Names
  17. Habib MA, Ibrahim F, Mohktar MS, Kamaruzzaman SB, Lim KS
    Clin Neurophysiol, 2020 03;131(3):642-654.
    PMID: 31978849 DOI: 10.1016/j.clinph.2019.11.058
    OBJECTIVE: This study aimed to present a new ictal component selection technique, named as recursive ICA-decomposition for ictal component selection (RIDICS), for potential application in epileptogenic zone localization.

    METHODS: The proposed technique decomposes ictal EEG recursively, eliminates a few unwanted components in every recursive cycle, and finally selects the most significant ictal component. Back-projected EEG, regenerated from that component, was used for source estimation. Fifty sets of simulated EEGs and 24 seizures in 8 patients were analyzed. Dipole sources of simulated-EEGs were compared with a known dipole location whereas epileptogenic zones of the seizures were compared with their corresponding sites of successful surgery. The RIDICS technique was compared with a conventional technique.

    RESULTS: The RIDICS technique estimated the dipole sources at an average distance of 12.86 mm from the original dipole location, shorter than the distances obtained using the conventional technique. Epileptogenic zones of the patients, determined by the RIDICS technique, were highly concordant with the sites of surgery with a concordance rate of 83.33%.

    CONCLUSIONS: Results show that the RIDICS technique can be a promising quantitative technique for ictal component selection.

    SIGNIFICANCE: Properly selected ictal component gives good approximation of epileptogenic zone, which eventually leads to successful epilepsy surgery.

    Matched MeSH terms: Names
  18. Shanmuga Sundara Raj S, Fun HK, Zhang XJ, Tian YP, Xie FX, Ma JL
    Acta Crystallogr C, 2000 Oct;56 (Pt 10):1238-9.
    PMID: 11025310
    In the crystal structure of the title compound, C(11)H(16)N(4)OS, the phenyl ring and the thiosemicarbazone moiety from a dihedral angle of 7.7 (1) degrees. The crystal structure is governed by N-H.O and O-H.S hydrogen bonds leading to the formation of a two-dimensional network.
    Matched MeSH terms: Names
  19. Shanmuga Sundara Raj S, Fun HK, Lu ZL, Xiao W, Gong XY, Gen CM
    Acta Crystallogr C, 2000 Aug;56 (Pt 8):1013-4.
    PMID: 10944309
    The crystal structure of the title compound, C(15)H(14)N(2)O(2). H(2)O, is in the keto tautomeric form and the configuration at the azomethine C=N double bond is E. The molecule is non-planar, with a dihedral angle of 27.3 (1) degrees between the aromatic rings. The crystal structure is stabilized by extensive hydrogen bonding involving the water molecule and hydrazone moiety.
    Matched MeSH terms: Names
  20. Ng SW, Yang Farina AA, Othman AH, Baba I, Sivakumar K, Fun HK
    Acta Crystallogr C, 2000 Mar 15;56(Pt 3):E84-5.
    PMID: 15263206
    The title compound, [Sn(CH(3))(2)(C(5)H(10)NO(2)S(2))(2)], has crystallographic mirror symmetry (C-Sn-C on mirror plane) and the coordination polyhedron around the Sn atom is a tetrahedron [C-Sn-C 139.3 (2) degrees and S-Sn-S 82.3 (1) degrees ] distorted towards a skew-trapezoidal bipyramid owing to an intramolecular Sn.S contact [3.0427 (6) A]. The molecules are linked into a linear chain by intermolecular O-H.O hydrogen bonds [O.O 2.646 (3) A].
    Matched MeSH terms: Names
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links