Displaying publications 1 - 20 of 34 in total

  1. Leong YH, Isa ASM, Mohamed Mahmood M, Moey CEJ, Utar Z, Soon YI, et al.
    Regul Toxicol Pharmacol, 2018 Jun;95:280-288.
    PMID: 29567329 DOI: 10.1016/j.yrtph.2018.03.011
    This study aimed to investigate the oral acute and subacute toxicity of Poly [3-hydroxybutyrate-co-4-hydroxybutyrate], P(3HB-co-4HB) in the form of nanoparticles in Sprague-Dawley rats. Acute oral administration of P(3HB-co-4HB) nanoparticles was performed as a single dose up to 2000 mg/kg in six female rats for 14 days. Subacute toxicity study via oral administration for 28 days at doses of 0 (control), 500, 1000 and 2000 mg/kg in rats (10 rats in each group, female:male = 1:1) was conducted. The estimated lethal dose (LD50) of P(3HB-co-4HB) nanoparticles was >2000 mg/kg. No mortality, unusual changes in behaviour, adverse clinical signs, abnormal changes in body weights or food consumption were observed on all animals treated with P(3HB-co-4HB) nanoparticles during 14 days of the acute toxicity study. In the subacute test, there was no mortality and toxicologically significant changes in clinical signs, body weights, food consumption, hematology, clinical biochemistry, urinalysis, macroscopic findings, organ weights as well as histopathological examination were observed.
    Matched MeSH terms: Nanoparticles/toxicity*
  2. Botelho DJ, Leo BF, Massa CB, Sarkar S, Tetley TD, Chung KF, et al.
    Nanotoxicology, 2016;10(1):118-27.
    PMID: 26152688 DOI: 10.3109/17435390.2015.1038330
    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.
    Matched MeSH terms: Metal Nanoparticles/toxicity*
  3. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    J Environ Sci (China), 2018 Oct;72:140-152.
    PMID: 30244741 DOI: 10.1016/j.jes.2017.12.022
    The toxicity and kinetic uptake potential of zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials into the red bean (Vigna angularis) plant were investigated. The results obtained revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant. However, TiO2 had a positive effect on plant physiology, resulting in promoted growth. The results of biochemical experiments implied that ZnO, through the generation of oxidative stress, significantly reduced the chlorophyll content, carotenoids and activity of stress-controlling enzymes. On the contrary, no negative biochemical impact was observed in plants treated with TiO2. For the kinetic uptake and transport study, we designed two exposure systems in which ZnO and TiO2 were exposed to red bean seedlings individually or in a mixture approach. The results showed that in single metal oxide treatments, the uptake and transport increased with increasing exposure period from one week to three weeks. However, in the metal oxide co-exposure treatment, due to complexation and competition among the particles, the uptake and transport were remarkably decreased. This suggested that the kinetic transport pattern of the metal oxide mixtures varied compared to those of its individual constituents.
    Matched MeSH terms: Metal Nanoparticles/toxicity*
  4. Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, et al.
    AAPS PharmSciTech, 2020 Nov 22;22(1):3.
    PMID: 33221968 DOI: 10.1208/s12249-020-01873-z
    Targeting the small intestine employing nanotechnology has proved to be a more effective way for site-specific drug delivery. The drug targeting to the small intestine can be achieved via nanoparticles for its optimum bioavailability within the systemic circulation. The small intestine is a remarkable candidate for localized drug delivery. The intestine has its unique properties. It has a less harsh environment than the stomach, provides comparatively more retention time, and possesses a greater surface area than other parts of the gastrointestinal tract. This review focuses on elaborating the intestinal barriers and approaches to overcome these barriers for internalizing nanoparticles and adopting different cellular trafficking pathways. We have discussed various factors that contribute to nanocarriers' cellular uptake, including their surface chemistry, surface morphology, and functionalization of nanoparticles. Furthermore, the fate of nanoparticles after their uptake at cellular and subcellular levels is also briefly explained. Finally, we have delineated the strategies that are adopted to determine the cytotoxicity of nanoparticles.
    Matched MeSH terms: Nanoparticles/toxicity
  5. Al-Doaiss A, Jarrar Q, Moshawih S
    IET Nanobiotechnol, 2020 Jul;14(5):405-411.
    PMID: 32691743 DOI: 10.1049/iet-nbt.2020.0039
    Silver nanoparticles (Ag NPs) are invested in various sectors and are becoming more persistent in our ambient environment with potential risk on our health and the ecosystems. The current study aims to investigate the histological, histochemical and ultrastructural hepatic changes that might be induced by 10 nm silver nanomaterials. Male mice (BALB/C) were exposed for 35 injections of daily dose of 10 nm Ag NPs (2 mg/kg). Liver tissues were subjected to examination by light and electron microscopy for histological, histochemical and ultrastructural alterations. Exposure to Ag NPs induced Kupffer cells hyperplasia, sinusoidal dilatation, apoptosis, ground glass hepatocytes appearance, nuclear changes, inflammatory cells infiltration, hepatocytes degeneration and necrosis. In addition, 10 nm Ag NPs induced histochemical alterations mainly glycogen depletion with no hemosiderin precipitation. Moreover, these nanomaterials exhibited ultrastructure alterations including mitochondrial swelling and cristolysis, cytoplasmic vacuolation, apoptosis, multilammellar myelin figures formation and endoplasmic destruction and reduction. The findings revealed that Ag NPs can induce alterations in the hepatic tissues, the chemical components of the hepatocytes and in the ultrastructure of the liver. One may also conclude that small size Ag NPs, which are increasingly used in human products could cause various toxigenic responses to all hepatic tissue components.
    Matched MeSH terms: Metal Nanoparticles/toxicity*
  6. Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM
    Biomolecules, 2021 04 12;11(4).
    PMID: 33921379 DOI: 10.3390/biom11040564
    Plants are rich in phytoconstituent biomolecules that served as a good source of medicine. More recently, they have been employed in synthesizing metal/metal oxide nanoparticles (NPs) due to their capping and reducing properties. This green synthesis approach is environmentally friendly and allows the production of the desired NPs in different sizes and shapes by manipulating parameters during the synthesis process. The most commonly used metals and oxides are gold (Au), silver (Ag), and copper (Cu). Among these, Cu is a relatively low-cost metal that is more cost-effective than Au and Ag. In this review, we present an overview and current update of plant-mediated Cu/copper oxide (CuO) NPs, including their synthesis, medicinal applications, and mechanisms. Furthermore, the toxic effects of these NPs and their efficacy compared to commercial NPs are reviewed. This review provides an insight into the potential of developing plant-based Cu/CuO NPs as a therapeutic agent for various diseases in the future.
    Matched MeSH terms: Metal Nanoparticles/toxicity
  7. Patnaik S, Gorain B, Padhi S, Choudhury H, Gabr GA, Md S, et al.
    Eur J Pharm Biopharm, 2021 Apr;161:100-119.
    PMID: 33639254 DOI: 10.1016/j.ejpb.2021.02.010
    Potential research outcomes on nanotechnology-based novel drug delivery systems since the past few decades attracted the attention of the researchers to overcome the limitations of conventional deliveries. Apart from possessing enhanced solubility of poorly water-soluble drugs, the targeting potential of the carriers facilitates longer circulation and site-specific delivery of the entrapped therapeutics. The practice of these delivery systems, therefore, helps in maximizing bioavailability, improving pharmacokinetics profile, pharmacodynamics activity and biodistribution of the entrapped drug(s). In addition to focusing on the positive side, evaluation of nanoparticulate systems for toxicity is a crucial parameter for its biomedical applications. Due to the size of nanoparticles, they easily traverse through biological barriers and may be accumulated in the body, where the ingredients incorporated in the formulation development might accumulate and/or produce toxic manifestation, leading to cause severe health hazards. Therefore, the toxic profile of these delivery systems needs to be evaluated at the molecular, cellular, tissue and organ level. This review offers a comprehensive presentation of toxicity aspects of the constituents of nanoparticular based drug delivery systems, which would be beneficial for future researchers to develop nanoparticulate delivery vehicles for the improvement of delivery approaches in a safer way.
    Matched MeSH terms: Nanoparticles/toxicity
  8. Barahuie F, Hussein MZ, Fakurazi S, Zainal Z
    Int J Mol Sci, 2014;15(5):7750-86.
    PMID: 24802876 DOI: 10.3390/ijms15057750
    Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.
    Matched MeSH terms: Nanoparticles/toxicity
  9. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, et al.
    Molecules, 2011 Aug 08;16(8):6667-76.
    PMID: 25134770 DOI: 10.3390/molecules16086667
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Visible (UV-Vis) spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10-30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0).
    Matched MeSH terms: Metal Nanoparticles/toxicity
  10. Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, et al.
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:167-75.
    PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040
    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
    Matched MeSH terms: Metal Nanoparticles/toxicity*
  11. Raja MA, Katas H, Jing Wen T
    PLoS One, 2015;10(6):e0128963.
    PMID: 26068222 DOI: 10.1371/journal.pone.0128963
    Chitosan (CS) nanoparticles have been extensively studied for siRNA delivery; however, their stability and efficacy are highly dependent on the types of cross-linker used. To address this issue, three common cross-linkers; tripolyphosphate (TPP), dextran sulphate (DS) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-TPP/DS/PGA nanoparticles by ionic gelation method. The resulting nanoparticles were compared with regard to their physicochemical properties including particle size, zeta potential, morphology, binding and encapsulation efficiencies. Among all the formulations prepared with different cross linkers, CS-TPP-siRNA had the smallest particle size (ranged from 127 ± 9.7 to 455 ± 12.9 nm) with zeta potential ranged from +25.1 ± 1.5 to +39.4 ± 0.5 mV, and high entrapment (>95%) and binding efficiencies. Similarly, CS-TPP nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-TPP-siRNA nanoparticles in contrast to irregular morphology displayed by CS-DS-siRNA and CS-PGA-siRNA nanoparticles. All siRNA loaded CS-TPP/DS/PGA nanoparticles showed initial burst release followed by sustained release of siRNA. Moreover, all the formulations showed low and concentration-dependent cytotoxicity with human colorectal cancer cells (DLD-1), in vitro. The cellular uptake studies with CS-TPP-siRNA nanoparticles showed successful delivery of siRNA within cytoplasm of DLD-1 cells. The results demonstrate that ionically cross-linked CS-TPP nanoparticles are biocompatible non-viral gene delivery system and generate a solid ground for further optimization studies, for example with regard to steric stabilization and targeting.
    Matched MeSH terms: Nanoparticles/toxicity
  12. Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, et al.
    Parasitol Res, 2017 Feb;116(2):495-502.
    PMID: 27815736 DOI: 10.1007/s00436-016-5310-0
    A main challenge in parasitology is the development of reliable tools to prevent or treat mosquito-borne diseases. We investigated the toxicity of magnetic nanoparticles (MNP) produced by Magnetospirillum gryphiswaldense (strain MSR-1) on chloroquine-resistant (CQ-r) and sensitive (CQ-s) Plasmodium falciparum, dengue virus (DEN-2), and two of their main vectors, Anopheles stephensi and Aedes aegypti, respectively. MNP were studied by Fourier-transform infrared spectroscopy and transmission electron microscopy. They were toxic to larvae and pupae of An. stephensi, LC50 ranged from 2.563 ppm (1st instar larva) to 6.430 ppm (pupa), and Ae. aegypti, LC50 ranged from 3.231 ppm (1st instar larva) to 7.545 ppm (pupa). MNP IC50 on P. falciparum were 83.32 μg ml(-1) (CQ-s) and 87.47 μg ml(-1) (CQ-r). However, the in vivo efficacy of MNP on Plasmodium berghei was low if compared to CQ-based treatments. Moderate cytotoxicity was detected on Vero cells post-treatment with MNP doses lower than 4 μg ml(-1). MNP evaluated at 2-8 μg ml(-1) inhibited DEN-2 replication inhibiting the expression of the envelope (E) protein. In conclusion, our findings represent the first report about the use of MNP in medical and veterinary entomology, proposing them as suitable materials to develop reliable tools to combat mosquito-borne diseases.
    Matched MeSH terms: Magnetite Nanoparticles/toxicity*
  13. Khattak A, Ahmad B, Rauf A, Bawazeer S, Farooq U, Ali J, et al.
    IET Nanobiotechnol, 2019 Feb;13(1):36-41.
    PMID: 30964035 DOI: 10.1049/iet-nbt.2018.5063
    The development of reliable and green methods for the fabrication of metallic nanoparticles (NPs) has many advantages in the field of nanotechnology. In this direction, the present work describes an eco-friendly and cost-effective protocol for the production of silver NPs (AgNPs) using an aqueous extract of Quercus semecarpifolia leaves. Different techniques were carried out for the characterisation of the synthesised AgNPs. The ultraviolet-visible spectroscopic analysis showed the highest absorbance peak at 430 nm. The particle size and structure were confirmed by scanning electron microscopy as well as transmission electron microscopy (TEM) analysis. From TEM imaging, it was revealed that the formed particles were spherical with an average size of 20-50 nm. The crystalline nature of the NPs was determined by X-ray powder diffraction patterns. Thermogravimetry and differential thermal analysis were also evaluated by a temperature increment from 100 to 1000°C. Bio-inspired synthesis of AgNPs was performed for their pharmacological evaluation in relation to the activities of the crude methanolic, n-hexane, chloroform, ethyl acetate, and aqueous extracts. Good cytotoxic activity was exhibited by the green-synthesised AgNPs (77%). Furthermore, the AgNPs were found to exhibit significant antioxidant activity at 300 μg/ml (82%). The AgNPs also exhibited good phytotoxic potential (75%).
    Matched MeSH terms: Metal Nanoparticles/toxicity
  14. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Hilmi NHZ, et al.
    PLoS One, 2020;15(4):e0231315.
    PMID: 32315346 DOI: 10.1371/journal.pone.0231315
    Although fungicides could be the best solution in combating fungal infections in crops, however, the phytotoxic level of fungicides to the crops should be tested first to ensure that it is safe for the crops. Moreover, nanocarrier systems of fungicides could play a significant role in the advancement of crop protection. For this reason, chitosan was chosen in the present study as a nanocarrier for fungicides of hexaconazole and/or dazomet in the development of a new generation of agronanofungicides with a high antifungal potent agent and no phytotoxic effect. Hence, the encapsulation of fungicides into the non-toxic biopolymer, chitosan was aims to reduce the phytotoxic level of fungicides. In the present study, the in vivo phytotoxicity of chitosan-fungicides nanoparticles on the physiological and vegetative growth of oil palm seedlings was evaluated in comparison to its pure fungicides as well as the conventional fungicides. The results revealed the formation of chitosan-fungicides nanoparticles could reduce the phytotoxic effect on oil palm seedlings compared to their counterparts, pure fungicides. The chitosan-fungicides nanoparticles were seen to greatly reduce the phytotoxic effect compared to the conventional fungicides with the same active ingredient.
    Matched MeSH terms: Nanoparticles/toxicity
  15. Taguchi K, Chuang VTG, Hashimoto M, Nakayama M, Sakuragi M, Enoki Y, et al.
    Chem Pharm Bull (Tokyo), 2020;68(8):766-772.
    PMID: 32741918 DOI: 10.1248/cpb.c20-00222
    Lactoferrin (Lf) nanoparticles have been developed as a carrier of drugs and gene. Two main methods, desolvation technique and emulsification method, for preparation of protein nanoparticles have been reported so far, but most of the previous reports of Lf nanoparticles preparation are limited to emulsification method. In this study, we investigated the optimal conditions by desolvation technique for the preparation of glutaraldehyde-crosslinked bovine Lf (bLf) nanoparticles within the size range of 100-200 nm, and evaluated their properties as a carrier for oral and intravenous drug delivery. The experimental results of dynamic light scattering and Transmission Electron Microscope suggested that glutaraldehyde-crosslinked bLf nanoparticles with 150 nm in size could be produced by addition of 2-propanol as the desolvating solvent into the bLf solution adjusted to pH 6, followed by crosslinking with glutaraldehyde. These cross-linked bLf nanoparticles were found to be compatible to blood components and resistant against rapid degradation by pepsin. Thus, cross-linked bLf nanoparticles prepared by desolvation technique can be applied as a drug carrier for intravenous administration and oral delivery.
    Matched MeSH terms: Nanoparticles/toxicity
  16. Al-Fahdawi MQ, Al-Doghachi FAJ, Abdullah QK, Hammad RT, Rasedee A, Ibrahim WN, et al.
    Biomed Pharmacother, 2021 Jun;138:111483.
    PMID: 33744756 DOI: 10.1016/j.biopha.2021.111483
    The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.
    Matched MeSH terms: Metal Nanoparticles/toxicity*
  17. Jakinala P, Lingampally N, Hameeda B, Sayyed RZ, Khan M Y, Elsayed EA, et al.
    PLoS One, 2021;16(3):e0241729.
    PMID: 33735177 DOI: 10.1371/journal.pone.0241729
    Silver nanoparticles (AgNPs) are among the most widely synthesized and used nanoparticles (NPs). AgNPs have been traditionally synthesized from plant extracts, cobwebs, microorganisms, etc. However, their synthesis from wing extracts of common insect; Mang mao which is abundantly available in most of the Asian countries has not been explored yet. We report the synthesis of AgNPs from M. mao wings extract and its antioxidant and antimicrobial activity. The synthesized AgNPs were spherical, 40-60 nm in size and revealed strong absorption plasmon band around at 430 nm. Highly crystalline nature of these particles as determined by Energy-dispersive X-ray analysis and X-ray diffraction further confirmed the presence of AgNPs. Hydrodynamic size and zeta potential of AgNPs were observed to be 43.9 nm and -7.12 mV, respectively. Fourier-transform infrared spectroscopy analysis revealed the presence of characteristic amide proteins and aromatic functional groups. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis revealed the presence of fatty acids in the wings extract that may be responsible for biosynthesis and stabilization of AgNPs. Further, SDS-PAGE of the insect wing extract protein showed the molecular weight of 49 kDa. M. mao silver nanoparticles (MMAgNPs) exhibit strong antioxidant, broad-range antibacterial and antifungal activities, (66.8 to 87.0%), broad-range antibacterial and antifungal activities was found with maximum zone of inhibition against Staphylococcus aureus MTCC 96 (35±0.4 mm) and Fusarium oxysporum f. sp. ricini (86.6±0.4) which signifies their biomedical and agricultural potential.
    Matched MeSH terms: Metal Nanoparticles/toxicity
  18. Zare-Zardini H, Amiri A, Shanbedi M, Taheri-Kafrani A, Kazi SN, Chew BT, et al.
    J Biomed Mater Res A, 2015 Sep;103(9):2959-65.
    PMID: 25690431 DOI: 10.1002/jbm.a.35425
    One of the novel applications of the nanostructures is the modification and development of membranes for hemocompatibility of hemodialysis. The toxicity and hemocompatibility of Ag nanoparticles and arginine-treated multiwalled carbon nanotubes (MWNT-Arg) and possibility of their application in membrane technology are investigated here. MWNT-Arg is prepared by amidation reactions, followed by characterization by FTIR spectroscopy, Raman spectroscopy, and thermogravimetric analysis. The results showed a good hemocompatibility and the hemolytic rates in the presence of both MWNT-Arg and Ag nanoparticles. The hemolytic rate of Ag nanoparticles was lower than that of MWNT-Arg. In vivo study revealed that Ag nanoparticle and MWNT-Arg decreased Hematocrit and mean number of red blood cells (RBC) statistically at concentration of 100 µg mL(-1) . The mean decrease of RBC and Hematocrit for Ag nanoparticles (18% for Hematocrit and 5.8 × 1,000,000/µL) was more than MWNT-Arg (20% for Hematocrit and 6 × 1000000/µL). In addition, MWNT-Arg and Ag nanoparticles had a direct influence on the White Blood Cell (WBC) drop. Regarding both nanostructures, although the number of WBC increased in initial concentration, it decreased significantly at the concentration of 100 µg mL(-1) . It is worth mentioning that the toxicity of Ag nanoparticle on WBC was higher than that of MWNT-Arg. Because of potent antimicrobial activity and relative hemocompatibility, MWNT-Arg could be considered as a new candidate for biomedical applications in the future especially for hemodialysis membranes.
    Matched MeSH terms: Metal Nanoparticles/toxicity*
  19. Dorniani D, Kura AU, Hussein-Al-Ali SH, Bin Hussein MZ, Fakurazi S, Shaari AH, et al.
    ScientificWorldJournal, 2014;2014:416354.
    PMID: 24737969 DOI: 10.1155/2014/416354
    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.
    Matched MeSH terms: Magnetite Nanoparticles/toxicity
  20. Chan YS, Mat Don M
    Mater Sci Eng C Mater Biol Appl, 2013 Jan 1;33(1):282-8.
    PMID: 25428073 DOI: 10.1016/j.msec.2012.08.041
    Five species of white rot fungi were screened for their capability to synthesize Ag nanoparticles (AgNPs). Three modes of AgNP bioreduction were developed. Pycnoporus sanguineus is found as a potential candidate for the synthesis of AgNPs with a yield at 98.9%. The synthesized AgNPs were characterized using UV-vis spectroscopy, DLS, FTIR, TEM, and SEM. Results showed that AgNP absorption band was located at a peak of 420 nm. Both the SEM and TEM confirmed that the formation of AgNPs were mainly spherical with average diameters of 52.8-103.3 nm. The signals of silver atoms' presence in the mycelium were observed by SEM-EDS spectrum.
    Matched MeSH terms: Metal Nanoparticles/toxicity
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links