METHODS: Data on children with perinatally acquired HIV aged <18 years on first-line, non-nucleoside reverse transcriptase inhibitor-based cART with viral suppression (two consecutive pVL <400 copies/mL over a six-month period) were included from a regional cohort study; those exposed to prior mono- or dual antiretroviral treatment were excluded. Frequency of pVL monitoring was determined at the site-level based on the median rate of pVL measurement: annual 0.75 to 1.5, and semi-annual >1.5 tests/patient/year. Treatment failure was defined as virologic failure (two consecutive pVL >1000 copies/mL), change of antiretroviral drug class, or death. Baseline was the date of the second consecutive pVL <400 copies/mL. Competing risk regression models were used to identify predictors of treatment failure.
RESULTS: During January 2008 to March 2015, there were 1220 eligible children from 10 sites that performed at least annual pVL monitoring, 1042 (85%) and 178 (15%) were from sites performing annual (n = 6) and semi-annual pVL monitoring (n = 4) respectively. Pre-cART, 675 children (55%) had World Health Organization clinical stage 3 or 4, the median nadir CD4 percentage was 9%, and the median pVL was 5.2 log10 copies/mL. At baseline, the median age was 9.2 years, 64% were on nevirapine-based regimens, the median cART duration was 1.6 years, and the median CD4 percentage was 26%. Over the follow-up period, 258 (25%) CLWH with annual and 40 (23%) with semi-annual pVL monitoring developed treatment failure, corresponding to incidence rates of 5.4 (95% CI: 4.8 to 6.1) and 4.3 (95% CI: 3.1 to 5.8) per 100 patient-years of follow-up respectively (p = 0.27). In multivariable analyses, the frequency of pVL monitoring was not associated with treatment failure (adjusted hazard ratio: 1.12; 95% CI: 0.80 to 1.59).
CONCLUSIONS: Annual compared to semi-annual pVL monitoring was not associated with an increased risk of treatment failure in our cohort of virally suppressed children with perinatally acquired HIV on first-line NNRTI-based cART.
DESIGN: Prospective studies of HIV-infected individuals in Europe and the US included in the HIV-CAUSAL Collaboration.
METHODS: Antiretroviral therapy-naive and AIDS-free individuals were followed from the time they started an NRTI, efavirenz or nevirapine, classified as following one or both types of regimens at baseline, and censored when they started an ineligible drug or at 6 months if their regimen was not yet complete. We estimated the 'intention-to-treat' effect for nevirapine versus efavirenz regimens on clinical, immunologic, and virologic outcomes. Our models included baseline covariates and adjusted for potential bias introduced by censoring via inverse probability weighting.
RESULTS: A total of 15 336 individuals initiated an efavirenz regimen (274 deaths, 774 AIDS-defining illnesses) and 8129 individuals initiated a nevirapine regimen (203 deaths, 441 AIDS-defining illnesses). The intention-to-treat hazard ratios [95% confidence interval (CI)] for nevirapine versus efavirenz regimens were 1.59 (1.27, 1.98) for death and 1.28 (1.09, 1.50) for AIDS-defining illness. Individuals on nevirapine regimens experienced a smaller 12-month increase in CD4 cell count by 11.49 cells/μl and were 52% more likely to have virologic failure at 12 months as those on efavirenz regimens.
CONCLUSIONS: Our intention-to-treat estimates are consistent with a lower mortality, a lower incidence of AIDS-defining illness, a larger 12-month increase in CD4 cell count, and a smaller risk of virologic failure at 12 months for efavirenz compared with nevirapine.
METHODS: Nevirapine population pharmacokinetics was modelled with Pmetrics. A total of 708 observations from 112 patients were included in the model building and validation analysis. Evaluation of the model was based on a visual inspection of observed versus predicted (population and individual) concentrations and plots weighted residual error versus concentrations. Accuracy and robustness of the model were evaluated by visual predictive check (VPC). The median parameters' estimates obtained from the final model were used to predict individual nevirapine plasma area-under-curve (AUC) in the validation dataset. The Bland-Altman plot was used to compare the AUC predicted with trapezoidal AUC.
RESULTS: The median nevirapine clearance was of 2.92 L/h, the median rate of absorption was 2.55/h and the volume of distribution was 78.23 L. Nevirapine pharmacokinetics were best described by one-compartmental with first-order absorption model and a lag-time. Weighted residuals for the model selected were homogenously distributed over the concentration and time range. The developed model adequately estimated AUC.
CONCLUSIONS: In conclusion, a model to describe the pharmacokinetics of nevirapine was developed. The developed model adequately describes nevirapine population pharmacokinetics in HIV-infected patients in Malaysia.