Displaying publications 1 - 20 of 374 in total

Abstract:
Sort:
  1. Jaafar MN, Ishak MS, Saharin S
    Environ Sci Technol, 2010 Apr 15;44(8):3111-5.
    PMID: 20345095 DOI: 10.1021/es903606y
    This paper presents the development of an emissions-controlling technique for oil burners aimed especially to reduce oxides of nitrogen (NOx). Another emission of interest is carbon monoxide (CO). In this research, a liquid fuel burner is used. In the first part, five different radial air swirler blade angles, 30 degrees , 40 degrees , 45 degrees , 50 degrees , and 60 degrees , respectively, have been investigated using a combustor with 163 mm inside diameter and 280 mm length. Tests were conducted using kerosene as fuel. Fuel was injected at the back plate of the swirler outlet. The swirler blade angles and equivalence ratios were varied. A NOx reduction of more than 28% and CO emissions reduction of more than 40% were achieved for blade angle of 60 degrees compared to the 30 degrees blade angle. The second part of this paper presents the insertion of an orifice plate at the exit plane of the air swirler outlet. Three different orifice plate diameters of 35, 40, and 45 mm were used with a 45 degrees radial air swirler vane angle. The fuel flow rates and orifice plate's sizes were varied. NOx reduction of more than 30% and CO emissions reduction of more than 25% were obtained using the 25 mm diameter orifice plate compared to the test configuration without the orifice plate. The last part of this paper presents tests conducted using the air-staging method. An industrial oil burner system was investigated using the air staging method in order to reduce emission, especially NOx. Emissions reduction of 30% and 16.7% were obtained for NOx and CO emissions, respectively, when using air staging compared to the non-air-staging tests.
    Matched MeSH terms: Nitric Oxide/isolation & purification*
  2. Bonsu KO, Kadirvelu A, Reidpath DD
    Pharmacol Ther, 2014 Sep;143(3):350.
    PMID: 24769330 DOI: 10.1016/j.pharmthera.2014.04.003
    Matched MeSH terms: Nitric Oxide Synthase/physiology*
  3. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2011 Jan 30;185(2-3):1609-13.
    PMID: 21071143 DOI: 10.1016/j.jhazmat.2010.10.053
    In this study, the kinetic parameters of rice husk ash (RHA)/CaO/CeO(2) sorbent for SO(2) and NO sorptions were investigated in a laboratory-scale stainless steel fixed-bed reactor. Data experiments were obtained from our previous results and additional independent experiments were carried out at different conditions. The initial sorption rate constant (k(0)) and deactivation rate constant (k(d)) for SO(2)/NO sorptions were obtained from the nonlinear regression analysis of the experimental breakthrough data using deactivation kinetic model. Both the initial sorption rate constants and deactivation rate constants increased with increasing temperature, except at operating temperature of 170 °C. The activation energy and frequency factor for the SO(2) sorption were found to be 18.0 kJ/mol and 7.37 × 10(5)cm(3)/(g min), respectively. Whereas the activation energy and frequency factor for the NO sorption, were estimated to be 5.64 kJ/mol and 2.19 × 10(4)cm(3)/(g min), respectively. The deactivation kinetic model was found to give a very good agreement with the experimental data of the SO(2)/NO sorptions.
    Matched MeSH terms: Nitric Oxide/chemistry*
  4. Gopinath VK, Musa M, Samsudin AR, Lalitha P, Sosroseno W
    Arch Oral Biol, 2006 Apr;51(4):339-44.
    PMID: 16214104
    The aim of this study was to determine the role of nitric oxide (NO) in hydroxyapatite (HA)-induced phagocytosis by a murine macrophage cell line (RAW264.7). The cells were incubated with HA particles at various incubation time and phagocytosis was assessed using phagocytic index (PI). NO production from the culture supernatants was determined by the Griess reagent. The inducible nitric oxide synthase (iNOS) expression was determined by Western blot. The particles were also incubated with cells pretreated with various concentrations of L-N(6)-(1-iminoethyl) lysine hydrochloride (L-NIL) or L-arginine. Latex beads were used as a control. Our results showed that macrophage phagocytosis induced by HA was higher than that induced by the beads. However, NO production by HA-stimulated cells was lower than that by bead-stimulated cells. iNOS expression in both bead- and HA-stimulated cells was observed expressed at 7, 15, 30, and 60 min. l-Arginine enhanced but l-NIL inhibited both phagocytosis and NO production by HA-stimulated cells. The results of the present study suggest that nitric oxide may play a crucial role in HA-induced phagocytosis by RAW264.7 cells.
    Matched MeSH terms: Nitric Oxide/biosynthesis; Nitric Oxide/immunology*; Nitric Oxide Synthase/antagonists & inhibitors; Nitric Oxide Synthase Type II/analysis; Nitric Oxide Synthase Type II/antagonists & inhibitors
  5. Hossain KA, Mohd-Jaafar MN, Appalanidu KB, Mustafa A, Ani FN
    Environ Technol, 2005 Mar;26(3):251-9.
    PMID: 15881021
    Selective Non-Catalytic Reduction (SNCR) of nitric oxide has been studied experimentally by injecting aqueous urea solution with and without additive in a pilot-scale diesel fired tunnel furnace at 3.4% excess oxygen level and with low ppm of baseline NO(x) ranging from 65 to 75 ppm within the investigated temperature range. The tests have been carried out using commercial grade urea as NO(x) reducing agent and commercial grade sodium carbonate as additive. The furnace simulated the small-scale combustion systems, where the operating temperatures are usually in the range of about 973 to 1323 K and NO(x) emission level remains below 100 ppm. With 5% plain urea solution, at Normalized Stoichiometric Ratio (NSR) of 4 as much as 54% reduction was achieved at 1128 K, whilst in the additive case the NO(x) reduction was improved to as much as 69% at 1093 K. Apart from this improvement, in the additive case, the effective temperature window as well as peak temperature of NO(x) reduction shifted towards lower temperatures. The result is quite significant, especially for this investigated level of baseline NO(x). The ammonia slip measurements showed that in both cases the slip was below 16 ppm at NSR of 4 and optimum temperature of NO(x) reduction. Finally, the investigations demonstrated that urea based SNCR is quite applicable to small-scale combustion applications and commercial grade sodium carbonate is a potential additive.
    Matched MeSH terms: Nitric Oxide/chemistry*
  6. Ugusman A, Zakaria Z, Chua KH, Nordin NA, Abdullah Mahdy Z
    ScientificWorldJournal, 2014;2014:169370.
    PMID: 25093198 DOI: 10.1155/2014/169370
    Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC). HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H₂O₂; treatment with 300 μM rutin; and concomitant induction with rutin and H₂O₂ for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P < 0.01). In the oxidative stress-induced HUVEC, rutin successfully induced cells' NO production (P < 0.01). Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P < 0.05), eNOS protein synthesis (P < 0.01), and eNOS activity (P < 0.05). Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF) in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells.
    Matched MeSH terms: Nitric Oxide/metabolism*; Nitric Oxide Synthase Type III/metabolism
  7. Rashedul HK, Kalam MA, Masjuki HH, Teoh YH, How HG, Monirul IM, et al.
    Environ Sci Pollut Res Int, 2017 Apr;24(10):9305-9313.
    PMID: 28233198 DOI: 10.1007/s11356-017-8573-9
    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.
    Matched MeSH terms: Nitric Oxide
  8. Newaz MA, Nawal NN, Rohaizan CH, Muslim N, Gapor A
    Am J Hypertens, 1999 Aug;12(8 Pt 1):839-44.
    PMID: 10480480
    Antioxidant protection provided by different doses of alpha-tocopherol was compared by determining nitric oxide synthase (NOS) activity in blood vessels of spontaneously hypertensive rats (SHR) treated with alpha-tocopherol. SHR were divided into four groups namely hypertensive control (C), treatment with 17 mg of alpha-tocopherol/kg diet (alpha1), 34 mg of alpha-tocopherol/kg diet (alpha2), and 170 mg of alpha-tocopherol/kg diet (alpha3). Wister Kyoto (WKY) rats were used as normal control (N). Blood pressure were recorded from the tail by physiography every other night for the duration of the study period of 3 months. At the end of the trial, animals were sacrificed. The NOS activity in blood vessels was measured by [3H]arginine radioactive assay and the nitrite concentration in plasma by spectrophotometry at wavelength 554 nm using Greiss reagent. Analysis of data was done using Student's t test and Pearson's correlation. The computer program Statistica was used for all analysis. Results of our study showed that for all the three alpha-tocopherol-treated groups, blood pressure was significantly (P < .001) reduced compared to the hypertensive control and maximum reduction of blood pressure was shown by the dosage of 34 mg of alpha-tocopherol/kg diet (C: 209.56 +/- 8.47 mm Hg; alpha2: 128.83 +/- 17.13 mm Hg). Also, NOS activity in blood vessels of SHR was significantly lower than WKY rats (N: 1.54 +/- 0.26 pmol/mg protein, C: 0.87 +/- 0.23 pmol/mg protein; P < .001). Although alpha-tocopherol in doses of alpha1, alpha2, and alpha3 increased the NOS activity in blood vessels, after treatment only that of alpha2 showed a statistical significance (P < .01). Plasma nitrite concentration was significantly reduced in SHR compared to normal WKY rats (N: 54.62 +/- 2.96 mol/mL, C: 26.24 +/- 2.14 mol/mL; P < .001) and accordingly all three groups showed significant improvement in their respective nitrite level (P < .001). For all groups, NOS activity and nitrite level showed negative correlation with blood pressure. It was significant for NOS activity in hypertensive control (r = -0.735, P = .038), alpha1 (r = -0.833, P = .001), and alpha2 (r = -0.899, P = .000) groups. For plasma nitrite, significant correlation was observed only in group alpha1 (r = -0.673, P = .016) and alpha2 (r = -0.643, P = .024). Only the alpha2 group showed significant positive correlation (r = 0.777, P = .003) between NOS activity and nitrite level. In conclusion it was found that compared to WKY rats, SHR have lower NOS activity in blood vessels, which upon treatment with antioxidant alpha-tocopherol increased the NOS activity and concomitantly reduced the blood pressure. There was correlation of lipid peroxide in blood vessels with NOS and nitric oxide, which implies that free radicals may be involved in the pathogenesis of hypertension.
    Matched MeSH terms: Nitric Oxide/metabolism; Nitric Oxide Synthase/metabolism*; Nitric Oxide Synthase Type III
  9. Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Spasov A, Ozerov A, et al.
    Mol. Vis., 2018;24:495-508.
    PMID: 30090013
    Purpose: Retinal nitrosative stress associated with altered expression of nitric oxide synthases (NOS) plays an important role in excitotoxic retinal ganglion cell loss in glaucoma. The present study evaluated the effects of magnesium acetyltaurate (MgAT) on changes induced by N-methyl-D-aspartate (NMDA) in the retinal expression of three NOS isoforms, retinal 3-nitrotyrosine (3-NT) levels, and the extent of retinal cell apoptosis in rats. Effects of MgAT with taurine (TAU) alone were compared to understand the benefits of a combined salt of Mg and TAU.

    Methods: Excitotoxic retinal injury was induced with intravitreal injection of NMDA in Sprague-Dawley rats. All treatments were given as pre-, co-, and post-treatment with NMDA. Seven days post-injection, the retinas were processed for measurement of the expression of NOS isoforms using immunostaining and enzyme-linked immunosorbent assay (ELISA), retinal 3-NT content using ELISA, retinal histopathological changes using hematoxylin and eosin (H&E) staining, and retinal cell apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining.

    Results: As observed on immunohistochemistry, the treatment with NMDA caused a 4.53-fold increase in retinal nNOS expression compared to the PBS-treated rats (p<0.001). Among the MgAT-treated groups, only the pretreatment group showed significantly lower nNOS expression than the NMDA-treated group with a 2.00-fold reduction (p<0.001). Among the TAU-treated groups, the pre- and cotreatment groups showed 1.84- and 1.71-fold reduction in nNOS expression compared to the NMDA-treated group (p<0.001), respectively, but remained higher compared to the PBS-treated group (p<0.01). Similarly, iNOS expression in the NMDA-treated group was significantly greater than that for the PBS-treated group (2.68-fold; p<0.001). All MgAT treatment groups showed significantly lower iNOS expression than the NMDA-treated groups (3.58-, 1.51-, and 1.65-folds, respectively). However, in the MgAT co- and post-treatment groups, iNOS expression was significantly greater than in the PBS-treated group (1.77- and 1.62-folds, respectively). Pretreatment with MgAT caused 1.77-fold lower iNOS expression compared to pretreatment with TAU (p<0.05). In contrast, eNOS expression was 1.63-fold higher in the PBS-treated group than in the NMDA-treated group (p<0.001). Among all treatment groups, only pretreatment with MgAT caused restoration of retinal eNOS expression with a 1.39-fold difference from the NMDA-treated group (p<0.05). eNOS expression in the MgAT pretreatment group was also 1.34-fold higher than in the TAU pretreatment group (p<0.05). The retinal NOS expression as measured with ELISA was in accordance with that estimated with immunohistochemistry. Accordingly, among the MgAT treatment groups, only the pretreated group showed 1.47-fold lower retinal 3-NT than the NMDA-treated group, and the difference was significant (p<0.001). The H&E-stained retinal sections in all treatment groups showed statistically significantly greater numbers of retinal cell nuclei than the NMDA-treated group in the inner retina. However, the ganglion cell layer thickness in the TAU pretreatment group remained 1.23-fold lower than that in the MgAT pretreatment group (p<0.05). In line with this observation, the number of apoptotic cells as observed after TUNEL staining was 1.69-fold higher after pretreatment with TAU compared to pretreatment with MgAT (p<0.01).

    Conclusions: MgAT and TAU, particularly with pretreatment, reduce retinal cell apoptosis by reducing retinal nitrosative stress. Pretreatment with MgAT caused greater improvement in NMDA-induced changes in iNOS and eNOS expression and retinal 3-NT levels than pretreatment with TAU. The greater reduction in retinal nitrosative stress after pretreatment with MgAT was associated with lower retinal cell apoptosis and greater preservation of the ganglion cell layer thickness compared to pretreatment with TAU.

    Matched MeSH terms: Nitric Oxide Synthase Type II/genetics; Nitric Oxide Synthase Type II/metabolism; Nitric Oxide Synthase Type I/genetics; Nitric Oxide Synthase Type I/metabolism; Nitric Oxide Synthase Type III/genetics; Nitric Oxide Synthase Type III/metabolism
  10. Sumathi S, Bhatia S, Lee KT, Mohamed AR
    J Hazard Mater, 2010 Apr 15;176(1-3):1093-6.
    PMID: 20018447 DOI: 10.1016/j.jhazmat.2009.11.037
    This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2).
    Matched MeSH terms: Nitric Oxide/isolation & purification*
  11. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim F
    J Oral Implantol, 2008;34(4):196-202.
    PMID: 18780564 DOI: 10.1563/0.910.1
    The aim of the present study was to test the hypothesis that the proliferation of a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite (HA) may be regulated by nitric oxide (NO). The cells were cultured on the surface of HA. Medium or cells alone were used as controls. L-arginine, D-arginine, 7-NI (an nNOS inhibitor), L-NIL (an iNOS inhibitor), L-NIO (an eNOS inhibitor) or carboxy PTIO, a NO scavenger, was added in the HA-exposed cell cultures. The cells were also precoated with anti-human integrin alphaV antibody. The levels of nitrite were determined spectrophotometrically. Cell proliferation was assessed by colorimetric assay. The results showed increased nitrite production and cell proliferation by HA-stimulated HOS cells up to day 3 of cultures. Anti-integrin alphaV antibody, L-NIO, or carboxy PTIO suppressed, but L-arginine enhanced, nitrite production and cell proliferation of HA-stimulated HOS cells. The results of the present study suggest, therefore, that interaction between HA and HOS cell surface integrin alphaV molecule may activate eNOS to catalyze NO production which, in turn, may regulate the cell proliferation in an autocrine fashion.
    Matched MeSH terms: Nitric Oxide/pharmacology*; Nitric Oxide Synthase/antagonists & inhibitors; Nitric Oxide Synthase Type II/antagonists & inhibitors; Nitric Oxide Synthase Type III/antagonists & inhibitors
  12. Imdadul HK, Zulkifli NW, Masjuki HH, Kalam MA, Kamruzzaman M, Rashed MM, et al.
    Environ Sci Pollut Res Int, 2017 Jan;24(3):2350-2363.
    PMID: 27815850 DOI: 10.1007/s11356-016-7847-y
    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.
    Matched MeSH terms: Nitric Oxide/analysis
  13. Ahmad A, Sattar MA, Azam M, Khan SA, Bhatt O, Johns EJ
    PLoS One, 2018;13(2):e0189386.
    PMID: 29447158 DOI: 10.1371/journal.pone.0189386
    Left ventricular hypertrophy (LVH) is associated with decreased responsiveness of renal α1-adrenoreceptors subtypes to adrenergic agonists. Nitric oxide donors are known to have antihypertrophic effects however their impact on responsiveness of renal α1-adrenoreceptors subtypes is unknown. This study investigated the impact of nitric oxide (NO) and its potential interaction with the responsiveness of renal α1-adrenoreceptors subtypes to adrenergic stimulation in rats with left ventricular hypertrophy (LVH). This study also explored the impact of NO donor on CSE expression in normal and LVH kidney. LVH was induced using isoprenaline and caffeine in drinking water for 2 weeks while NO donor (L-arginine, 1.25g/Lin drinking water) was given for 5 weeks. Intrarenal noradrenaline, phenylephrine and methoxamine responses were determined in the absence and presence of selective α1-adrenoceptor antagonists, 5- methylurapidil (5-MeU), chloroethylclonidine (CeC) and BMY 7378. Renal cortical endothelial nitric oxide synthase mRNA was upregulated 7 fold while that of cystathione γ lyase was unaltered in the NO treated LVH rats (LVH-NO) group compared to LVH group. The responsiveness of renal α1A, α1B and α1D-adrenoceptors in the low dose and high dose phases of 5-MeU, CEC and BMY7378 to adrenergic agonists was increased along with cGMP in the kidney of LVH-NO group. These findings suggest that exogenous NO precursor up-regulated the renal eNOS/NO/cGMP pathway in LVH rats and resulted in augmented α1A, α1B and α1D adrenoreceptors responsiveness to the adrenergic agonists. There is a positive interaction between H2S and NO production in normal animals but this interaction appears absent in LVH animals.
    Matched MeSH terms: Nitric Oxide/physiology*
  14. Sadeghipour O
    Sains Malaysiana, 2017;46:189-195.
    Lead (Pb) is one of the most abundant toxic heavy metals which adversely affected growth and yield of crop plants. Nitric oxide (NO), an endogenous signaling molecule, has been suggested to be involved in defense responses to biotic and abiotic stresses in plants. The present study was done to induce Pb tolerance in cowpea plants by exogenous NO application using two levels of Pb, 0 and 200 mg Pb (NO3)2 kg-1 soil and three NO levels, 0, 0.5 and 1 mM sodium nitroprusside (SNP), as NO donor. The results showed that Pb treatment caused a significant increase in Pb concentration in all plant parts. Roots had higher levels of Pb than the stems, leaves and seeds. Furthermore, lead toxicity reduced auxin (IAA), cytokinin and gibberellic acid (GA3) content but increased abscisic acid (ABA) level. Moreover Pb stress decreased stomatal conductance, leaf area and consequently seed yield of cowpea. Exogenous application of NO at 0.5 mM noticeably alleviated the lead toxicity by improving the leaf area, stomatal conductance and seed yield. NO increased Pb tolerance by lowering Pb uptake and translocation, enhancing the promoting phytohormone (IAA, cytokinin and GA3) level and reducing ABA content.
    Matched MeSH terms: Nitric Oxide; Nitric Oxide Donors
  15. Alagan A, Jantan I, Kumolosasi E, Ogawa S, Abdullah MA, Azmi N
    Front Pharmacol, 2019;10:632.
    PMID: 31231221 DOI: 10.3389/fphar.2019.00632
    Background:Phyllanthus amarus (PA) is widely studied for its hepatoprotective properties but has recently received increasing attention due to its diverse anti-inflammatory effects. However, the effects of PA in modulating immune responses in the central nervous system leading to protection against functional changes remain unexplored. Therefore, we sought to examine the protective effects of 80% v/v ethanol extract of PA on lipopolysaccharide (LPS)-induced non-spatial memory impairment and neuroinflammation. Methods: Selected major phytoconstituents of PA extract were identified and quantified using high-performance liquid chromatography. Subchronic neurotoxicity was performed in male Wistar rats given daily oral administration of 100, 200, and 400 mg/kg of the PA extract. Their neurobehavioral activities (functional observation battery and locomotor activity) were scored, and the extracted brains were examined for neuropathological changes. Rats were treated orally with vehicle (5% Tween 20), PA extract (100, 200, and 400 mg/kg), or ibuprofen (IBF; 40 mg/kg) for 14 and 28 days before being subjected to novel object discrimination test. All groups were challenged with LPS (1 mg/kg) given intraperitoneally a day prior to the behavioral tests except for the negative control group. At the end of the behavioral tests, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, nitric oxide (NO), inducible nitric oxide synthase (iNOS), CD11b/c integrin expression, and synaptophysin immunoreactivity were determined in the brain tissues. Results: Gallic acid, ellagic acid, corilagin, geraniin, niranthin, phyllanthin, hypophyllanthin, phyltetralin, and isonirtetralin were identified in the PA extract. Subchronic administration of PA extract (100, 200, and 400 mg/kg) showed no abnormalities in neurobehavior and brain histology. PA extract administered at 200 and 400 mg/kg for 14 and 28 days effectively protected the rodents from LPS-induced memory impairment. Similar doses significantly (p < 0.05) decreased the release of proteins like TNF-α, IL-1β, and iNOS in the brain tissue. NO levels, CD11b/c integrin expression, and synaptophysin immunoreactivity were also reduced as compared with those in the LPS-challenged group. Conclusion: Pre-treatment with PA extract for 14 and 28 days was comparable with pre-treatment with IBF in prevention of memory impairment and alleviation of neuroinflammatory responses induced by LPS. Further studies are essential to identify the bioactive phytochemicals and the precise underlying mechanisms.
    Matched MeSH terms: Nitric Oxide; Nitric Oxide Synthase Type II
  16. Ismail EN, Jantan I, Vidyadaran S, Jamal JA, Azmi N
    BMC Complement Med Ther, 2020 Jul 01;20(1):202.
    PMID: 32611404 DOI: 10.1186/s12906-020-02961-0
    BACKGROUND: Phyllanthus amarus has been shown to attenuate lipopolysaccharide (LPS)-induced peripheral inflammation but similar studies in the central nervous system are scarce. The aim of the present study was to investigate the neuroprotective effects of 80% ethanol extract of P. amarus (EPA) in LPS-activated BV2 microglial cells.

    METHODS: BV2 microglial cells c for 24 h, pre-treated with EPA for 24 h prior to LPS induction for another 24 h. Surface expression of CD11b and CD40 on BV2 cells was analyzed by flow cytometry. ELISA was employed to measure the production of pro-inflammatory mediators i.e. nitric oxide (NO) and tumor necrosis factor (TNF)-α. Western blotting technique was used to determine the expression of inducible nitric oxide synthase (iNOS), myeloid differentiation protein 88 (MYD88), nuclear factor kappa B (NF-κB), caspase-1, and mitogen activated protein kinase (MAPK).

    RESULTS: Qualitative and quantitative analyses of the EPA using a validated ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method indicated the presence of phyllanthin, hypophyllanthin, niranthin, ellagic acid, corilagin, gallic acid, phyltetralin, isolintetralin and geraniin. EPA suppressed the production of NO and TNFα in LPS-activated BV2 microglial cells. Moreover, EPA attenuated the expression of MyD88, NF-κB and MAPK (p-P38, p-JNK and p-ERK1/2). It also inhibited the expression of CD11b and CD40. EPA protected against LPS-induced microglial activation via MyD88 and NF-κB signaling in BV2 microglial cells.

    CONCLUSIONS: EPA demonstrated neuroprotective effects against LPS-induced microglial cells activation through the inhibition of TNFα secretion, iNOS protein expression and subsequent NO production, inhibition of NF-κB and MAPKs mediated by adapter protein MyD88 and inhibition of microglial activation markers CD11b and CD40.

    Matched MeSH terms: Nitric Oxide; Nitric Oxide Synthase Type II
  17. Razali FN, Ismail A, Abidin NZ, Shuib AS
    PLoS One, 2014;9(10):e108988.
    PMID: 25299340 DOI: 10.1371/journal.pone.0108988
    The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth.
    Matched MeSH terms: Nitric Oxide/metabolism; Nitric Oxide Synthase Type II/metabolism
  18. Sugiatno E, Samsudin AR, Ibrahim MF, Sosroseno W
    Biomed Pharmacother, 2006 May;60(4):147-51.
    PMID: 16581222
    The aim of the present study was to determine the effect of nitric oxide (NO) on the production of prostaglandin E2 (PGE2) by a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite. Cells were cultured on the HA surfaces with or without the presence of NO donors (SNAP and NAP) for 3 days. The effect of NO scavenger, carboxy PTIO, or endothelial nitric oxide synthase (eNOS) inhibitor, L-NIO, was assessed by adding this scavenger in the cultures of HA-stimulated HOS cells with or without the presence of SNAP. Furthermore, HOS cells were pre-treated with anti-human integrin alphaV antibody, indomethacin, a non-specific inhibitor, aspirin, a COX-1 inhibitor, or nimesulide, a COX-2 inhibitor, prior to culturing on HA surfaces with or without the presence of SNAP. The levels of PGE2 were determined from the 3 day culture supernatants. The results showed that the production of PGE2 by HA-stimulated HOS cells was augmented by SNAP. Carboxy PTIO suppressed but L-NIO only partially inhibited the production of PGE2 by HA-stimulated HOS cells with or without the presence of exogenous NO. Pre-treatment of the cells with anti-human integrin alphaV antibody, indomethacin or nimesulide but not aspirin suppressed the production of PGE2 by HA-stimulated HOS cells with or without the presence of NO. Therefore, the results of the present study suggest that NO may up-regulate the production of PGE2 by augmenting the COX-2 pathway initiated by the binding between HOS cell-derived integrin alphaV and HA surface.
    Matched MeSH terms: Nitric Oxide/pharmacology*; Nitric Oxide Donors/pharmacology
  19. Phan CS, Ng SY, Kim EA, Jeon YJ, Palaniveloo K, Vairappan CS
    Mar Drugs, 2015 May;13(5):3103-15.
    PMID: 25996100 DOI: 10.3390/md13053103
    Two new bicyclogermacrenes, capgermacrenes A (1) and B (2), were isolated with two known compounds, palustrol (3) and litseagermacrane (4), from a population of Bornean soft coral Capnella sp. The structures of these metabolites were elucidated based on spectroscopic data. Compound 1 was found to inhibit the accumulation of the LPS-induced pro-inflammatory IL-1b and NO production by down-regulating the expression of iNOS protein in RAW 264.7 macrophages.
    Matched MeSH terms: Nitric Oxide/metabolism; Nitric Oxide Synthase Type II/metabolism
  20. Hashim S, Wong C, Abas M, Dahlan K
    An electron beam (EB) flue gas test rig and a dielectric barrier discharge (DBD) reactor were tested for the removal of nitric oxide (NO) from gas stream in separate experiments. In both systems, energised electrons were used to produce radicals that reacted with the pollutants. The EB system was a laboratory scale test rig used to treat emission from a diesel run generator. At 1.0 MeV and 10 mA more than 90% NO removal from flue gases flowing at 120 Nm3/h can be achieved. For higher removal percentage, higher beam current was required. In a related effort, a table top, two tubes DBD reactor was used to process bottled gases containing 106 ppm NO. Total removal (>99%) was achieved when the inlet gas contained only NO and N2. Additional SO2 in the in let gas stream lowered the removal rate but was overcame by scaling up the system to 10 DBD tubes. The system was operated with input AC voltage of 35 kV peak to peak. In the EB treatment system, the amount of NO2 increased at high beam current, showing that the NO was also oxidised in the process. Whereas in the DBD reactor, the amount of NO2 remained insignificant throughout the process. This leads to the conclusion that the DBD reactor is capable of producing total removal of NO. This is highly desirable as post treatment will not be necessary.
    Matched MeSH terms: Nitric Oxide
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links