Displaying publications 1 - 20 of 45 in total

  1. Z. Chin, Abraham
    Since the 1970s, people’s understanding of life has gradually deepened into the basic material nucleic acid and protein levels of life. The life sciences have entered the era of “molecules†and produced a large number of new and interdisciplinary subjects. An important direction has had a major and profound impact on the development of epidemiology itself and on disease control.
    Matched MeSH terms: Nucleic Acids
  2. Higashi SL, Rozi N, Hanifah SA, Ikeda M
    Int J Mol Sci, 2020 Dec 12;21(24).
    PMID: 33322664 DOI: 10.3390/ijms21249458
    Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.
    Matched MeSH terms: Nucleic Acids/ultrastructure; Nucleic Acids/chemistry*; Peptide Nucleic Acids/ultrastructure; Peptide Nucleic Acids/chemistry*
  3. Phan CW, Wang JK, Cheah SC, Naidu M, David P, Sabaratnam V
    Crit Rev Biotechnol, 2018 Aug;38(5):762-777.
    PMID: 29124970 DOI: 10.1080/07388551.2017.1399102
    Mushrooms have become increasingly important as a reliable food source. They have also been recognized as an important source of bioactive compounds of high nutritional and medicinal values. The nucleobases, nucleosides and nucleotides found in mushrooms play important roles in the regulation of various physiological processes in the human body via the purinergic and/or pyrimidine receptors. Cordycepin, a 3'-deoxyadenosine found in Cordyceps sinensis has received much attention as it possesses many medicinal values including anticancer properties. In this review, we provide a broad overview of the distribution of purine nucleobases (adenine and guanine); pyrimidine nucleobases (cytosine, uracil, and thymine); nucleosides (uridine, guanosine, adenosine and cytidine); as well as novel nucleosides/tides in edible and nonedible mushrooms. This review also discusses the latest research focusing on the successes, challenges, and future perspectives of the analytical methods used to determine nucleic acid constituents in mushrooms. Besides, the exotic taste and flavor of edible mushrooms are attributed to several nonvolatile and water-soluble substances, including the 5'-nucleotides. Therefore, we also discuss the total flavor 5'-nucleotides: 5'-guanosine monophosphate (5'-GMP), 5'-inosine monophosphate (5'-IMP), and 5'-xanthosine monophosphate (5'-XMP) in edible mushrooms.
    Matched MeSH terms: Nucleic Acids*
  4. Thevendran R, Sarah S, Tang TH, Citartan M
    J Control Release, 2020 07 10;323:530-548.
    PMID: 32380206 DOI: 10.1016/j.jconrel.2020.04.051
    Aptamers are a class of folded nucleic acid strands capable of binding to different target molecules with high affinity and selectivity. Over the years, they have gained a substantial amount of interest as promising molecular tools for numerous medical applications, particularly in targeted therapeutics. However, only the different treatment approaches and current developments of aptamer-drug therapies have been discussed so far, ignoring the crucial technical and functional aspects of constructing a therapeutically effective aptamer-driven drug delivery system that translates to improved in-vivo performance. Hence, this paper provides a comprehensive review of the strategies used to improve the therapeutic performance of aptamer-guided delivery systems. We focus on the different functional features such as drug deployment, payload capacity, in-vivo stability and targeting efficiency to further our knowledge in enhancing the cell-specific delivery of aptamer-drug conjugates. Each reported strategy is critically discussed to emphasize both the benefits provided in comparison with other similar techniques and to outline their potential drawbacks with respect to the molecular properties of the aptamers, the drug and the system to be designed. The molecular architecture and design considerations for an efficient aptamer-based delivery system are also briefly elaborated.
    Matched MeSH terms: Nucleic Acids
  5. Hassan R, Husin A, Sulong S, Yusoff S, Johan MF, Yahaya BH, et al.
    Malays J Pathol, 2015 Aug;37(2):165-73.
    PMID: 26277676 MyJurnal
    Matched MeSH terms: Nucleic Acids/analysis*
  6. Fischbach J, Loh Q, Bier FF, Lim TS, Frohme M, Glökler J
    Sci Rep, 2017 03 24;7:45085.
    PMID: 28338022 DOI: 10.1038/srep45085
    We identified Alizarin Red S and other well known fluorescent dyes useful for the online detection of pyrophosphate in enzymatic assays, including the loop mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assays. An iterative screening was used for a selected set of compounds to first secure enzyme compatibility, evaluate inorganic pyrophosphate sensitivity in the presence of manganese as quencher and optimize conditions for an online detection. Of the selected dyes, the inexpensive alizarin red S was found to selectively detect pyrophosphate under LAMP and PCR conditions and is superior with respect to its defined red-shifted spectrum, long shelf life and low toxicity. In addition, the newly identified properties may also be useful in other enzymatic assays which do not generate nucleic acids but are based on inorganic pyrophosphate. Finally, we propose that our screening method may provide a blueprint for rapid screening of compounds for detecting inorganic pyrophosphate.
    Matched MeSH terms: Nucleic Acids
  7. Hameed AM, Asiyanbi-H T, Idris M, Fadzillah N, Mirghani MES
    Trop Life Sci Res, 2018 Jul;29(2):213-227.
    PMID: 30112151 MyJurnal DOI: 10.21315/tlsr2018.29.2.15
    Gelatin is a very popular pharmaceutical and food ingredient and the most studied ingredient in Halal researches. Interest in source gelatin authentication is based on religious and cultural beliefs, food fraud prevention and health issues. Seven gelatin authentication methods that have been developed include: nucleic acid based, immunochemical, electrophoretic analysis, spectroscopic, mass-spectrometric, chromatographic-chemometric and chemisorption methods. These methods are time consuming, and require capital intensive equipment with huge running cost. Reliability of gelatin authentication methods is challenged mostly by transformation of gelatin during processing and close similarities among gelatin structures. This review concisely presents findings and challenges in this research area and suggests needs for more researches on development of rapid authentication method and process-transformed gelatins.
    Matched MeSH terms: Nucleic Acids
  8. Zeti Norfidiyati Salmuna, Murnihayati Hassan, Habsah Hasan, Zakuan Zainy Deris
    Carpanenamase-producing Enterobacteriaceae (CPE) has emerged as a threat to hospitalized patients. Phenotypic test such as Modified hodge test was less sensitive and specific especially to detect blaNDM-1 which is the most predominant genotype in this region. Nucleic acid amplification technology offers improved specificity and sensitivity. Failed amplification due to the presence of inhibitors is a limitation. In this study, we tried to use previous method described by Villumseen et al with some modification using another DNA extraction kit. Methods: Ten mls of sterile whole blood taken from nearly expired blood bag from blood bank was spiked with 200 μl of 0.5mcFarland bacterial suspension from thirty-six confirmed isolates of blaNDM-1 carbapenamase-producing Klebsiella pneumoniae in an aerobic Bactec Plus and incubated until the growth was detected. The blood specimen was subjected to DNA extraction method using Macherey-Nachel, Nucleospin® Blood QuickPure followed with multiplex PCR. Results: Out of the 36 isolates, 12 isolates revealed blaNDM-1 , 9 isolates revealed blaNDM-1 and blaOXA-48, 7 isolates revealed blaNDM-1, blaVIM and blaKPC genotypes that were amplified at cycle threshold of less than 30. Another 8 isolates could not pick up any genotypes possibly due to pipetting error as all the internal control were amplified. Eight true negative gram negative isolates underwent same procedure and none amplified at a cycle threshold less than 30. Conclusion: This modified method was proved to give a high yield of CPE genotypes with the cycle threshold was set at less than or equal to 30 and able to overcome the presence of PCR inhibitors.
    Matched MeSH terms: Nucleic Acids
  9. Lee JW, Ong EBB
    Front Cell Dev Biol, 2020;8:619126.
    PMID: 33511130 DOI: 10.3389/fcell.2020.619126
    Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
    Matched MeSH terms: Nucleic Acids
  10. Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR
    PMID: 33146031 DOI: 10.1080/10408398.2020.1841728
    Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus are the most significant aquatic pathogens of the genera Vibrio, account for most Vibrio-associated outbreaks worldwide. Rapid identification of these pathogens is of great importance for disease surveillance, outbreak investigations and food safety maintenance. Traditional culture dependent methods are time-consuming and labor-intensive whereas culture-independent polymerase chain reaction (PCR) based assays are reliable, consistent, rapid and reproducible. This review covers the recent development and applications of PCR based techniques, which have accelerated advances in the analysis of nucleic acids to identify three major pathogenic vibrios. Emphasis has been given to analytical approaches as well as advantages and limits of the available methods. Overall, this review article possesses the substantial merit to be used as a reference guide for the researchers to develop improved PCR based techniques for the differential detection and quantification of Vibrio species.
    Matched MeSH terms: Nucleic Acids
  11. Jia TZ, Bapat NV, Verma A, Mamajanov I, Cleaves HJ, Chandru K
    Biomacromolecules, 2021 Apr 12;22(4):1484-1493.
    PMID: 33663210 DOI: 10.1021/acs.biomac.0c01697
    Nucleic acid segregation and compartmentalization were likely essential functions that primitive compartment systems resolved during evolution. Recently, polyester microdroplets generated from dehydration synthesis of various α-hydroxy acids (αHA) were suggested as potential primitive compartments. Some of these droplets can differentially segregate and compartmentalize organic dyes, proteins, and nucleic acids. However, the previously studied polyester microdroplets included limited αHA chemical diversity, which may not reflect the chemical diversity available in the primitive Earth environment. Here, we increased the chemical diversity of polyester microdroplet systems by combinatorially adding an αHA monomer with a basic side chain, 4-amino-2-hydroxybutyric acid (4a2h), which was incorporated with different ratios of other αHAs containing uncharged side chains to form combinatorial heteropolyesters via dehydration synthesis. Incorporation of 4a2h in the polymers resulted in the assembly of some polyester microdroplets able to segregate fluorescent RNA or potentially acquire intrinsic fluorescent character, suggesting that minor modifications of polyester composition can significantly impact the functional properties of primitive compartments. This study suggests one process by which primitive chemical systems can increase diversity of compartment "phenotype" through simple modifications in their chemical composition.
    Matched MeSH terms: Nucleic Acids
  12. Lee WL, Huang JY, Shyur LF
    Oxid Med Cell Longev, 2013;2013:925804.
    PMID: 24454991 DOI: 10.1155/2013/925804
    Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The "double-edged sword" role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review.
    Matched MeSH terms: Nucleic Acids/metabolism*
  13. Yew CT, Azari P, Choi JR, Li F, Pingguan-Murphy B
    Anal Chim Acta, 2018 Jun 07;1009:81-88.
    PMID: 29422135 DOI: 10.1016/j.aca.2018.01.016
    Point-of-care biosensors are important tools developed to aid medical diagnosis and testing, food safety and environmental monitoring. Paper-based biosensors, especially nucleic acid-based lateral flow assays (LFA), are affordable, simple to produce and easy to use in remote settings. However, the sensitivity of such assays to infectious diseases has always been a restrictive challenge. Here, we have successfully electrospun polycaprolactone (PCL) on nitrocellulose (NC) membrane to form a hydrophobic coating to reduce the flow rate and increase the interaction rate between the targets and gold nanoparticles-detecting probes conjugates, resulting in the binding of more complexes to the capture probes. With this approach, the sensitivity of the PCL electrospin-coated test strip has been increased by approximately ten-fold as compared to the unmodified test strip. As a proof of concept, this approach holds great potential for sensitive detection of targets at point-of-care testing.
    Matched MeSH terms: Nucleic Acids/analysis*
  14. Rashid JI, Yusof NA, Abdullah J, Hashim U, Hajian R
    PMID: 25491829 DOI: 10.1016/j.msec.2014.09.010
    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel.
    Matched MeSH terms: Immobilized Nucleic Acids/metabolism; Immobilized Nucleic Acids/chemistry
  15. Nadzirah Sh, Azizah N, Hashim U, Gopinath SC, Kashif M
    PLoS One, 2015;10(10):e0139766.
    PMID: 26445455 DOI: 10.1371/journal.pone.0139766
    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.
    Matched MeSH terms: Immobilized Nucleic Acids/genetics; Immobilized Nucleic Acids/chemistry
  16. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal Chem, 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Nucleic Acids/analysis*; Nucleic Acids/metabolism
  17. Ariffin EY, Lee YH, Futra D, Tan LL, Karim NHA, Ibrahim NNN, et al.
    Anal Bioanal Chem, 2018 Mar;410(9):2363-2375.
    PMID: 29504083 DOI: 10.1007/s00216-018-0893-1
    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12-1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
    Matched MeSH terms: Immobilized Nucleic Acids/genetics; Immobilized Nucleic Acids/chemistry
  18. Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH
    Mikrochim Acta, 2019 11 19;186(12):804.
    PMID: 31745737 DOI: 10.1007/s00604-019-3913-8
    A fluorometric assay is described for highly sensitive quantification of Escherichia coli O157:H7. Reporter oligos were immobilized on graphene quantum dots (GQDs), and quencher oligos were immobilized on gold nanoparticles (AuNPs). Target DNA was co-hybridized with reporter oligos on the GQDs and quencher oligos on AuNPs. This triggers quenching of fluorescence (with excitation/emission peaks at 400 nm/530 nm). On introducing target into the system, fluorescence is quenched by up to 95% by 100 nM concentrations of target oligos having 20 bp. The response to the fliC gene of E. coli O157:H7 increases with the logarithm of the concentration in the range from 0.1 nM to 150 nM. The limit of detection is 1.1 ± 0.6 nM for n = 3. The selectivity and specificity of the assay was confirmed by evaluating the various oligos sequences and PCR product (fliC gene) amplified from genomic DNA of the food samples spiked with E. coli O157:H7. Graphical abstractSchematic representation of fluorometric assay for highly sensitive quantification of Escherichia coli O157:H7 based on fluorescence quenching gene assay for fliC gene of E. coli O157:H7.
    Matched MeSH terms: Immobilized Nucleic Acids/genetics; Immobilized Nucleic Acids/chemistry
  19. Tang R, Yang H, Choi JR, Gong Y, Hu J, Feng S, et al.
    Talanta, 2016 May 15;152:269-76.
    PMID: 26992520 DOI: 10.1016/j.talanta.2016.02.017
    Lateral flow assays (LFAs) hold great promise for point-of-care testing, especially in resource-poor settings. However, the poor sensitivity of LFAs limits their widespread applications. To address this, we developed a novel device by integrating dialysis-based concentration method into LFAs. The device successfully achieved 10-fold signal enhancement in Human Immunodeficiency Virus (HIV) nucleic acid detection with a detection limit of 0.1nM and 4-fold signal enhancement in myoglobin (MYO) detection with a detection limit of 1.56ng/mL in less than 25min. This simple, low-cost and portable integrated device holds great potential for highly sensitive detection of various target analytes for medical diagnostics, food safety analysis and environmental monitoring.
    Matched MeSH terms: Nucleic Acids
  20. Wan Norhana, M. N., Masazurah A. R.
    Hepatitis A is a liver infection caused by the hepatitis A virus (HAV). Outbreaks of hepatitis A have been linked to the consumption of both raw and cooked shellfish. These outbreaks could induce a public confidence problem over shellfish safety and may result in important economic losses for the seafood industry. The work presented in this study investigated the presence of HAV in shellfish from Peninsular Malaysia. A total of 365 of cultured and wild shellfish from 36 sampling locations located throughout Peninsular Malaysia were examined using a commercial nucleic acid extraction and reverse transcription -polymerase chain reaction (RT-PCR) kit. HAV was not detected in almost all of the shellfish samples xamined. Only one cockle sample from Changkat, Seberang Perai was positive for HAV. The results suggest the absence of HAV or very low amount of HAV viral particles in most of the shellfish examined.
    Matched MeSH terms: Nucleic Acids
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links