Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Shuid AN, Soelaiman IN, Das S
    Curr Drug Targets, 2013 Dec;14(13):1523.
    PMID: 24266612
    Matched MeSH terms: Osteoporosis/drug therapy*
  2. Shuid AN, Ima Nirwana S, Das S
    Curr Drug Targets, 2013 Dec;14(14):1631.
    PMID: 24383964
    Matched MeSH terms: Osteoporosis/drug therapy*
  3. Moshiri A, Sharifi AM, Oryan A
    Clin Exp Pharmacol Physiol, 2016 Jul;43(7):659-84.
    PMID: 27061579 DOI: 10.1111/1440-1681.12577
    Simvastatin is a lipid lowering drug whose beneficial role on bone metabolism was discovered in 1999. Several in vivo studies evaluated its role on osteoporosis and fracture healing, however, controversial results are seen in the literature. For this reason, Simvastatin has not been the focus of any clinical trials as yet. This systematic review clears the mechanisms of action of Simvastatin on bone metabolism and focuses on in vivo investigations that have evaluated its role on osteoporosis and fracture repair to find out (i) whether Simvastatin is effective on treatment of osteoporosis and fracture repair, and (ii) which of the many available protocols may have the ability to be translated in the clinical setting. Simvastatin induces osteoinduction by increasing osteoblast activity and differentiation and inhibiting their apoptosis. It also reduces osteoclastogenesis by decreasing both the number and activity of osteoclasts and their differentiation. Controversial results between the in vivo studies are mostly due to the differences in the route of administration, dose, dosage and carrier type. Local delivery of Simvastatin through controlled drug delivery systems with much lower doses and dosages than the systemic route seems to be the most valuable option in fracture healing. However, systemic delivery of Simvastatin with much higher doses and dosages than the clinical ones seems to be effective in managing osteoporosis. Simvastatin, in a particular range of doses and dosages, may be beneficial in managing osteoporosis and fracture injuries. This review showed that Simvastatin is effective in the treatment of osteoporosis and fracture healing.
    Matched MeSH terms: Osteoporosis/drug therapy*
  4. Yeap SS, Hosking DJ
    Rheumatology (Oxford), 2002 Oct;41(10):1088-94.
    PMID: 12364625 DOI: 10.1093/rheumatology/41.10.1088
    Corticosteroid (CS) therapy is widely used in the treatment of rheumatic diseases. Osteoporosis remains one of its major complications. The risk of low bone mineral density (BMD) and fracture may be already increased in some of the rheumatic diseases, regardless of CS therapy. However, in spite of this, preventative treatment for osteoporosis in patients on CS remains low. Patients on or about to start CS use for more than 6 months are at risk of corticosteroid-induced osteoporosis (CIOP). The pathogenesis of CIOP differs from post-menopausal osteoporosis in that bone formation is said to be more suppressed compared with bone resorption. The diagnosis of CIOP can be made on clinical risk factors and may not require measurement of BMD. Many agents used in post-menopausal osteoporosis such as activated vitamin D products, hormone replacement therapy, fluoride, calcitonin and the bisphosphonates have been shown to maintain or improve BMD in CIOP. However, there are few data on the reduction in fracture rates in CIOP, but the bisphosphonates seem the most promising in this regard.
    Matched MeSH terms: Osteoporosis/drug therapy*
  5. Chin KY, Pang KL, Soelaiman IN
    Adv Exp Med Biol, 2016;928:97-130.
    PMID: 27671814
    Tocotrienol is a member of vitamin E family and is well-known for its antioxidant and anti-inflammatory properties. It is also a suppressor of mevalonate pathway responsible for cholesterol and prenylated protein synthesis. This review aimed to discuss the health beneficial effects of tocotrienol, specifically in preventing or treating hyperlipidaemia, diabetes mellitus, osteoporosis and cancer with respect to these properties. Evidence from in vitro, in vivo and human studies has been examined. It is revealed that tocotrienol shows promising effects in preventing or treating the health conditions previously mentioned in in vivo and in vitro models. In some cases, alpha-tocopherol attenuates the biological activity of tocotrienol. Except for its cholesterol-lowering effects, data on the health-promoting effects of tocotrienol in human are limited. As a conclusion, the encouraging results on the health beneficial effects of tocotrienol should motivate researchers to explore its potential use in human.
    Matched MeSH terms: Osteoporosis/drug therapy
  6. Jolly JJ, Chin KY, Alias E, Chua KH, Soelaiman IN
    PMID: 29751644 DOI: 10.3390/ijerph15050963
    Osteoporosis is a serious health problem affecting more than 200 million elderly people worldwide. The early symptoms of this disease are hardly detectable. It causes progressive bone loss, which ultimately renders the patients susceptible to fractures. Osteoporosis must be prevented because the associated fragility fractures result in high morbidity, mortality, and healthcare costs. Many plants used in herbal medicine contain bioactive compounds possessing skeletal protective effects. This paper explores the anti-osteoporotic properties of selected herbal plants, including their actions on osteoblasts (bone forming cells), osteoclasts (bone resorbing cells), and bone remodelling. Some of the herbal plant families included in this review are Berberidaceae, Fabaceae, Arecaceae, Labiatae, Simaroubaceaea, and Myrsinaceae. Their active constituents, mechanisms of action, and pharmaceutical applications were discussed. The literature shows that very few herbal plants have undergone human clinical trials to evaluate their pharmacological effects on bone to date. Therefore, more intensive research should be performed on these plants to validate their anti-osteoporotic properties so that they can complement the currently available conventional drugs in the battle against osteoporosis.
    Matched MeSH terms: Osteoporosis/drug therapy*
  7. Chin KY, Ima-Nirwana S
    Aging Male, 2015 Mar;18(1):60-6.
    PMID: 25166624 DOI: 10.3109/13685538.2014.954995
    This study aimed to determine the effects of orchidectomy and supraphysiological testosterone replacement on trabecular structure and gene expression in the bone.
    Matched MeSH terms: Osteoporosis/drug therapy
  8. Chin KY, Ima-Nirwana S
    Nutrients, 2014 Apr;6(4):1424-41.
    PMID: 24727433 DOI: 10.3390/nu6041424
    Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to clarify the role of αTF on bone health. Our review found that αTF exerted beneficial, harmful or null effects on bone formation cells. Animal studies generally showed positive effects of αTF supplementation on bone in various models of osteoporosis. However, high-dose αTF was possibly detrimental to bone in normal animals. Human studies mostly demonstrated a positive relationship between αTF, as assessed using high performance liquid chromatography and/or dietary questionnaire, and bone health, as assessed using bone mineral density and/or fracture incidence. Three possible reasons high dosage of αTF can be detrimental to bone include its interference with Vitamin K function on bone, the blocking of the entry of other Vitamin E isomers beneficial to bone, and the role of αTF as a prooxidant. However, these adverse effects have not been shown in human studies. In conclusion, αTF may have a dual role in bone health, whereby in the appropriate doses it is beneficial but in high doses it may be harmful to bone.
    Matched MeSH terms: Osteoporosis/drug therapy
  9. Rufus P, Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(14):1689-93.
    PMID: 24354584
    Osteoporosis is a metabolic bone disorder that affects both men and women worldwide. It causes low bone mass and therefore increases bone susceptibility to fracture when bone undergoes a minor trauma. Lack of estrogen is the principal cause of osteoporosis. Estrogen, calcium, calcitonin, vitamin D and several antioxidants help in the prevention of osteoporosis. In order to effectively treat osteoporosis, there has been an extended research on the biological activities of traditional medicines since synthetic medicines possess several side effects that reduce their efficacy. Therefore, there is a need to develop new treatment alternatives for osteoporosis. This review centres on the scientific researches carried out on the evaluation of Chinese traditional medicines in the treatment of osteoporosis. Various plants like Achyranthes bidentata, Davallia formosana, polygonatum sibiricum, Cibotium barometz, Er-Zhi-Wan, Curculigo orchioides and a combined treatment of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) with alendronate proved active in preventing post-menopausal osteoporosis.
    Matched MeSH terms: Osteoporosis/drug therapy*
  10. Shuid AN, Mohamed IN
    Curr Drug Targets, 2013 Dec;14(13):1565-78.
    PMID: 24200293
    This review explores the effects of pomegranate on the pathogenesis of bone loss in osteoporosis, osteoarthritis and rheumatoid arthritis. A systematic review of the literature was conducted to identify the relevant studies on pomegranate and osteoporosis/osteoarthritis/rheumatoid arthritis. A comprehensive search was conducted in Medline and CINAHL for relevant studies published between the years 1946 to 2012. The main inclusion criteria were research articles published in English, studies had to report the association or effect of pomegranate and these bone and joint diseases: osteoporosis, osteoarthritis or rheumatoid arthritis. The literature search identified 35 potentially relevant articles, whereby 8 met the inclusion criteria. Two animal studies, two combinations of animal and in vitro studies, three in vitro studies and one human study were included in this review. All the studies reported positive effects of pomegranate extract or juice on osteoporosis, osteoarthritis and rheumatoid arthritis. This evidence-based review highlighted the potential of pomegranate extract being used for treating bone loss in osteoporosis, osteoarthritis and rheumatoid arthritis. Further studies are required to identify the active ingredients and molecular mechanisms before controlled human observational studies are conducted to provide stronger evidence.
    Matched MeSH terms: Osteoporosis/drug therapy*
  11. Erfanian A, Mirhosseini H, Rasti B, Hair-Bejo M, Bin Mustafa S, Abd Manap MY
    J Agric Food Chem, 2015 Jun 24;63(24):5795-804.
    PMID: 26022498 DOI: 10.1021/acs.jafc.5b01468
    The aim of this study was to evaluate the effects of fortification and nano-size reduction on calcium absorption and bioavailability of milk powder formula in sham, ovariectomized, and ovariectomized-osteoporosis rats as a menopause and menopause-osteoporosis model. Skim milk powder and skim milk powder fortified with calcium citrate and the suitable doses of inulin, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and vitamins D3, K1, and B6 were formulated based on the North American and Western European recommended dietary allowances. Optimization on cycle and pressure of high-pressure homogenizer was done to produce nano-fortified milk powder. In vivo study demonstrated that fortification and calcium citrate nano-fortified milk powder increased absorption and bioavailability of calcium, as well as bone stiffness and bone strength in sham, ovariectomized, and ovariectomized-osteoporosis rats. This study successfully developed an effective fortified milk powder for food application.
    Matched MeSH terms: Osteoporosis/drug therapy*
  12. Mitchell PJ, Cooper C, Fujita M, Halbout P, Åkesson K, Costa M, et al.
    Curr Osteoporos Rep, 2019 12;17(6):510-520.
    PMID: 31734907 DOI: 10.1007/s11914-019-00544-8
    PURPOSE OF REVIEW: This review sought to describe quality improvement initiatives in fragility fracture care and prevention.

    RECENT FINDINGS: A major care gap persists throughout the world in the secondary prevention of fragility fractures. Systematic reviews have confirmed that the Fracture Liaison Service (FLS) model of care is associated with significant improvements in rates of bone mineral density testing, initiation of osteoporosis treatment and adherence with treatment for individuals who sustain fragility fractures. Further, these improvements in the processes of care resulted in significant reductions in refracture risk and lower post-fracture mortality. The primary challenge facing health systems now is to ensure that best practice is delivered effectively in the local healthcare setting. Publication of clinical standards for FLS at the organisational and patient level in combination with the establishment of national registries has provided a mechanism for FLS to benchmark and improve their performance. Major efforts are ongoing at the global, regional and national level to improve the acute care, rehabilitation and secondary prevention for individuals who sustain fragility fractures. Active participation in these initiatives has the potential to eliminate current care gaps in the coming decade.

    Matched MeSH terms: Osteoporosis/drug therapy*
  13. Mohamad NV, Ima-Nirwana S, Chin KY
    PMID: 32496996 DOI: 10.2174/1871530320666200604160614
    Osteoporosis is one of the major health issues associated with menopause-related estrogen deficiency. Various reports suggest that the hormonal changes related to menopausal transition may lead to the derangement of redox homeostasis and ultimately oxidative stress. Estrogen deficiency and oxidative stress may enhance the expression of genes involved in inflammation. All these factors may contribute, in synergy, to the development of postmenopausal osteoporosis. Previous studies suggest that estrogen may act as an antioxidant to protect the bone against oxidative stress, and as an antiinflammatory agent in suppressing pro-inflammatory and pro-osteoclastic cytokines. Thus, the focus of the current review is to examine the relationship between estrogen deficiency, oxidative stress and inflammation, and the impacts of these phenomena on skeletal health in postmenopausal women.
    Matched MeSH terms: Osteoporosis/drug therapy
  14. Jayusman PA, Mohamed IN, Alias E, Mohamed N, Shuid AN
    Nutrients, 2018 Jun 21;10(7).
    PMID: 29933617 DOI: 10.3390/nu10070799
    Male osteoporosis is associated with higher rates of disability and mortality. Hence the search for suitable intervention and treatment to prevent the degeneration of skeletal health in men is necessary. Eurycoma longifolia (EL), a traditional plant with aphrodisiac potential may be used to treat and prevent male osteoporosis. The skeletal protective effect of quassinoid-rich EL extract, which has a high content of eurycomanone, has not been studied. This study aimed to determine whether EL could prevent skeletal deteriorations in gonadal hormone-deficient male rats. Ninety-six male Sprague⁻Dawley rats were randomly assigned to baseline, sham-operated (Sham), orchidectomised or chemically castrated groups. Chemical castration was achieved via subcutaneous injection of degarelix at 2 mg/kg. The orchidectomised and degarelix-castrated rats were then divided into negative control groups (ORX, DGX), testosterone-treated groups (intramuscular injection at 7 mg/kg weekly) (ORX + TES, DGX + TES), and EL-supplemented groups receiving daily oral gavages at doses of 25 mg/kg (ORX + EL25, DGX + EL25), 50 mg/kg (ORX + EL50, DGX + EL50), and 100 mg/kg (ORX + EL100, DGX + EL100). Following 10 weeks of treatment, the rats were euthanized and their blood and femora were collected. Bone biochemical markers, serum testosterone, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa β-ligand (RANKL) levels and histomorphometric indices were evaluated. Quassinoid-rich EL supplementation was found to reduce degenerative changes of trabecular structure by improving bone volume, trabecular number, and separation. A reduction in the percentage of osteoclast and increase in percentage of osteoblast on bone surface were also seen with EL supplementation. Dynamic histomorphometric analysis showed that the single-labeled surface was significantly decreased while the double-labeled surface was significantly increased with EL supplementations. There was a marginal but significant increase in serum testosterone levels in the ORX + EL25, DGX + EL50, and DGX + EL100 groups compared to their negative control groups. Quassinoid-rich EL extract was effective in reducing skeletal deteriorations in the androgen-deficient osteoporosis rat model.
    Matched MeSH terms: Osteoporosis/drug therapy*
  15. Abdul-Majeed S, Mohamed N, Soelaiman IN
    Life Sci, 2015 Mar 15;125:42-8.
    PMID: 25534439 DOI: 10.1016/j.lfs.2014.12.012
    Statins are competitive inhibitors of HMGCoA reductase and are commonly used as antihypercholesterolemic agents. Experimental studies clearly demonstrate the beneficial effects of statins on bone. Tocotrienols have also been shown to have anti-osteoporotic effects on the skeletal system. This study was conducted to observe the effect of a combination of delta-tocotrienol and lovastatin on structural bone histomorphometry and bone biomechanical strength in a postmenopausal rat model at clinically tolerable doses, and to compare it with the effect of delta-tocotrienol or lovastatin.
    Matched MeSH terms: Osteoporosis/drug therapy*
  16. Chin KY, Abdul-Majeed S, Fozi NF, Ima-Nirwana S
    Nutrients, 2014 Nov;6(11):4974-83.
    PMID: 25389899 DOI: 10.3390/nu6114974
    This study aimed to evaluate the effects of annatto tocotrienol on indices of bone static histomorphometry in orchidectomized rats. Forty male rats were randomized into baseline (BL), sham (SH), orchidectomized (ORX), annatto tocotrienol-treated (AnTT) and testosterone enanthate-treated (TE) groups. The BL group was sacrificed upon receipt. All rats except the SH group underwent bilateral orchidectomy. Annatto tocotrienol at 60 mg/kg body weight was administered orally daily to the AnTT group for eight weeks. Testosterone enanthate at 7 mg/kg body weight was administered intramuscularly once weekly for eight weeks to the TE group. The rat femurs were collected for static histomorphometric analysis upon necropsy. The results indicated that the ORX group had significantly higher osteoclast surface and eroded surface, and significantly lower osteoblast surface, osteoid surface and osteoid volume compared to the SH group (p < 0.05). Annatto tocotrienol and testosterone enanthate intervention prevented all these changes (p < 0.05). The efficacy of annatto tocotrienol was on par with testosterone enanthate. In conclusion, annatto tocotrienol at 60 mg/kg can prevent the imbalance in bone remodeling caused by increased osteoclast and bone resorption, and decreased osteoblast and bone formation. This serves as a basis for the application of annatto tocotrienol in hypogonadal men as an antiosteoporotic agent.
    Matched MeSH terms: Osteoporosis/drug therapy*
  17. Chin KY, Ima-Nirwana S
    Clin Interv Aging, 2014;9:1247-59.
    PMID: 25120355 DOI: 10.2147/CIA.S67016
    BACKGROUND: Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.
    METHODS: Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.
    RESULTS: There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).
    CONCLUSION: AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
    KEYWORDS: bone remodeling; osteoporosis; testosterone; tocotrienol
    Matched MeSH terms: Osteoporosis/drug therapy*
  18. Effendy NM, Shuid AN
    Nutrients, 2014 Aug;6(8):3288-302.
    PMID: 25195641 DOI: 10.3390/nu6083288
    Postmenopausal osteoporosis can be associated with oxidative stress and deterioration of antioxidant enzymes. It is mainly treated with estrogen replacement therapy (ERT). Although effective, ERT may cause adverse effects such as breast cancer and pulmonary embolism. Labisia pumila var. alata (LP), a herb used traditionally for women's health was found to protect against estrogen-deficient osteoporosis. An extensive study was conducted in a postmenopausal osteoporosis rat model using several LP doses and duration of treatments to determine if anti-oxidative mechanisms were involved in its bone protective effects. Ninety-six female Sprague-Dawley rats were randomly divided into six groups; baseline group (BL), sham-operated (Sham), ovariectomised control (OVXC), ovariectomised (OVX) and given 64.5 μg/kg of Premarin (ERT), ovariectomised and given 20 mg/kg of LP (LP20) and ovariectomised and given 100 mg/kg of LP (LP100). The groups were further subdivided to receive their respective treatments via daily oral gavages for three, six or nine weeks of treatment periods. Following euthanization, the femora were dissected out for bone oxidative measurements which include superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA) levels.
    Matched MeSH terms: Osteoporosis/drug therapy*
  19. Abdul Jalil MA, Shuid AN, Muhammad N
    Curr Drug Targets, 2013 Dec;14(14):1651-8.
    PMID: 24354586
    With improvements in living standards and healthcare, life expectancy has been increasing dramatically in most parts of the world. These situations lead to the increase in the reported cases of geriatrics-related diseases such as hypogonadal osteoporosis with skeletal fracture being the ultimate outcome, which eventually causes significant morbidity and mortality. The deficient gonadal hormones, which are the main cause of hypogonadal osteoporosis, could be substituted with hormone replacement therapy to hinder bone loss. However, the artificial hormonal therapy has been linked to grievous conditions such as breast and prostate cancers. In view of the various adverse effects associated with conventional treatment, many researchers are now focusing on finding alternative remedies from nature. This article explores the possibilities of certain medicinal plants native to Malaysia that possess androgenic and antioxidant properties to potentially be used in the treatment of fracture due to osteoporosis in ageing people.
    Matched MeSH terms: Osteoporosis/drug therapy
  20. Das S, Sakthiswary R
    Curr Drug Targets, 2013 Dec;14(14):1667-74.
    PMID: 24354585
    Preventing osteoporotic fractures in millions of individuals may significantly reduce the associated morbidity and health-care expenditures incurred. As such, the search for newer anti-osteoporotic agents has been ongoing for years. Genetic studies have proven that the secreted protein sclerostin is one of the main culprits, which negatively regulates the bone formation. Recently, sclerostin-neutralizing monoclonal antibodies (Scl-Ab) in rodent studies have shown positive effects on bone homeostasis. An extensive search of the literature was performed in the BIOSIS, Cinahl, EMBASE, Pub- Med, Web of Science and Cochrane Library databases to evaluate the published murine studies on the effects of Scl-Ab on the bone metabolism and histomorphometric parameters. Our systematic review depicts a significant association between Scl-Ab administration and improvement in bone formation, bone density, bone volume and trabecular thickness.
    Matched MeSH terms: Osteoporosis/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links