Displaying all 12 publications

Abstract:
Sort:
  1. Jeremy Wong HS, Huong KH, Shafie NAH, Amirul AA
    J Biotechnol, 2021 Aug 20;337:71-79.
    PMID: 34233208 DOI: 10.1016/j.jbiotec.2021.07.001
    The sustainability in polyhydroxyalkanoates (PHA) production is drawing increasing attention as the effort to increase the economic feasibility for commercialization pursues. Oleic acid is widely preferred by bacteria but its employment for PHA production makes sustainability rather dubious. This study showed promising poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] content of 68 wt % by lipase genes-harbouring Cupriavidus malaysiensis USMAA2-4 transformant from palm olein and 1-pentanol. High oleic acid content and low oil saturation caused palm olein to outperform crude palm oil, crude palm kernel oil and soybean oil due to its preference for oleic acid shown by previous screening. The transformant showed 8-fold and 40-fold higher lipase activity compared to C. necator H16 and its wild-type respectively. The transformant was unaffected by Co2+ but the growth of C. necator H16 was inversely proportional to Co2+ concentration and the employment of 1-pentanol also ceased its growth and PHA accumulation. Although the inhibitory effect of Fe2+, Cu2+ and Zn2+ at high molarity on LipA decreased PHA content of C. malaysiensis USMAA2-4 transformant by 23-24 wt %, the lipase activity was restorable with high molarity of Ca2+, thus resulted in higher PHA content. The transformant enabled the employment of low-cost 1-pentanol as the precursor for cost-effective PHA production and its preference for palm olein contributed to higher sustainability.
    Matched MeSH terms: Pentanols
  2. Leong SW, Abas F, Lam KW, Yusoff K
    Bioorg Med Chem Lett, 2018 02 01;28(3):302-309.
    PMID: 29292226 DOI: 10.1016/j.bmcl.2017.12.048
    A series of thirty-four diarylpentanoids derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity. Eleven compounds (19, 20, 21, 24, 27, 28, 29, 31, 32, 33 and 34) were found to significantly inhibit α-glucosidase in which compounds 28, 31 and 32 demonstrated the highest activity with IC50 values ranging from 14.1 to 15.1 µM. Structure-activity comparison shows that multiple hydroxy groups are essential for α-glucosidase inhibitory activity. Meanwhile, 3,4-dihydroxyphenyl and furanyl moieties were found to be crucial in improving α-glucosidase inhibition. Molecular docking analyses further confirmed the critical role of both 3,4-dihydroxyphenyl and furanyl moieties as they bound to α-glucosidase active site in different mode. Overall result suggests that diarylpentanoids with both five membered heterocyclic ring and polyhydroxyphenyl moiety could be a new lead design in the search of novel α-glucosidase inhibitor.
    Matched MeSH terms: Pentanols/chemical synthesis; Pentanols/pharmacology*; Pentanols/chemistry
  3. Madadi M, Elsayed M, Sun F, Wang J, Karimi K, Song G, et al.
    Bioresour Technol, 2023 Mar;371:128591.
    PMID: 36627085 DOI: 10.1016/j.biortech.2023.128591
    A new cutting-edge lignocellulose fractionation technology for the co-production of glucose, native-like lignin, and furfural was introduced using mannitol (MT)-assisted p-toluenesulfonic acid/pentanol pretreatment, as an eco-friendly process. The addition of optimized 5% MT in pretreatment enhanced the delignification rate by 29% and enlarged the surface area and biomass porosity by 1.07-1.80 folds. This increased the glucose yield by 45% (from 65.34 to 94.54%) after enzymatic hydrolysis relative to those without MT. The extracted lignin in the organic phase of pretreatment exhibited β-O-4 bonds (61.54/100 Ar) properties of native cellulosic enzyme lignin. Lignin characterization and molecular docking analyses revealed that the hydroxyl tails of MT were incorporated with lignin and formed etherified lignin, which preserved high lignin integrity. The solubilized hemicellulose (96%) in the liquid phase of pretreatment was converted into furfural with a yield of 83.99%. The MT-assisted pretreatment could contribute to a waste-free biorefinery pathway toward a circular bioeconomy.
    Matched MeSH terms: Pentanols
  4. Haslaniza, H., Maskat, M. Y, Wan Aida, W. M., Mamot, S., Saadiah, I.
    MyJurnal
    Cockle (Anadara granosa) meat wash water precipitate was hydrolyzed using bromelain. Experiments were carried out to determine optimum conditions for temperature, enzyme concentration and hydrolysis time using response surface methodology (RSM) based on a central composite rotatable design (CCRD) to obtain the highest value of nitrogen content (NC) and degree of hydrolysis (DH). Results revealed that the optimum conditions for temperature, enzyme concentration and hydrolysis time were 33.7°C, 1.45% (E/S) and 28.42 hrs, respectively. At the optimum condition, hydrolysis of cockle meat wash water precipitate using bromelain resulted in a NC of 0.6% and DH of 48%. The NC and DH were significantly influenced by temperature, enzyme concentration and hydrolysis time. When the bromelain concentration, hydrolysis time and temperature were increased, the values of NC and DH also increased. The hydrolysate produced contained flavor compounds found in clam and oyster which were 3-methylbutanol and 1-pentanol. The compound 3-MCPD was not found in the hydrolysate.
    Matched MeSH terms: Pentanols
  5. Kamarulzaman NH, Le-Minh N, Stuetz RM
    Talanta, 2019 Jan 01;191:535-544.
    PMID: 30262095 DOI: 10.1016/j.talanta.2018.09.019
    Different extraction procedures were evaluated to assess their potential for measuring volatile organic compounds (VOCs) from raw rubber materials. Four headspace sampling techniques (SHS, DHS, HS-SPME and µ-CTE) were studied. Each method was firstly optimised to ensure their reliability in performance. Passive sampling was also compared as a rapid identification of background VOCs. 352 VOCs were identified, 71 from passive sampling and 281 from active headspace sampling, with 62 not previously reported (hexanenitrile, octanone, decanal, indole, aniline, anisole, alpha-pinene as well as pentanol and butanol). The volatiles belonged to a broad range of chemical classes (ketones, aldehydes, aromatics, acids, alkanes, alcohol and cyclic) with their thermal effects (lower boiling points) greatly affecting their abundance at a higher temperature. Micro-chamber (µ-CTE) was found to be the most suitability for routine assessments due to its operational efficiency (rapidity, simplicity and repeatability), identifying 115 compounds from both temperatures (30 °C and 60 °C). Whereas, HS-SPME a widely applied headspace technique, only identified 75 compounds and DHS identified 74 VOCs and SHS only 17 VOCs. Regardless of the extraction technique, the highest extraction efficiency corresponded to aromatics and acids, and the lowest compound extraction were aldehyde and hydrocarbon. The interaction between techniques and temperature for all chemical groups were evaluated using two-way ANOVA (p-value is 0.000197) explaining the highly significant interactions between factors.
    Matched MeSH terms: Pentanols
  6. Aina GQ, Erwanto Y, Hossain M, Johan MR, Ali ME, Rohman A
    J Adv Vet Anim Res, 2019 Sep;6(3):300-307.
    PMID: 31583226 DOI: 10.5455/javar.2019.f348
    Objective: The objective of this study was to employ real-time or quantitative polymerase chain reaction (q-PCR) using novel species specific primer (SSP) targeting on mitochondrial cytochrome-b of wild boar species (CYTBWB2-wb) gene for the identification of non-halal meat of wild boar meat (WBM) in meatball products.

    Materials and Methods: The novel SSP of CYTBWB2-wb was designed by our group using PRIMERQUEST and NCBI software. DNA was extracted using propanol-chloroform-isoamyl alcohol method. The designed SSP was further subjected for validation protocols using DNA isolated from fresh meat and from meatball, which include specificity test, determination of efficiency, limit of detection and repeatability, and application of developed method for analysis of commercially meatball samples.

    Results: The results showed that CYTBWB2-wb was specific to wild boar species against other animal species with optimized annealing temperature of 59°C. The efficiency of q-PCR obtained was 91.9% which is acceptable according to the Codex Allimentarius Commission (2010). DNA, with as low as 5 pg/μl, could be detected using q-PCR with primer of CYTBWB2-wb. The developed method was also used for DNA analysis extracted from meatball samples commercially available.

    Conclusion: q-PCR using CYTBWB2-wb primers targeting on mitochondrial cytochrome-b gene (forward: CGG TTC CCT CTT AGG CAT TT; Reverse: GGA TGA ACA GGC AGA TGA AGA) can be fruitfully used for the analysis of WBM in commercial meatball samples.

    Matched MeSH terms: Pentanols
  7. Khairul-Anuar MA, Mazumdar P, Lau SE, Tan TT, Harikrishna JA
    3 Biotech, 2019 Oct;9(10):371.
    PMID: 31588395 DOI: 10.1007/s13205-019-1898-y
    Isolation of high-quality RNA from Dendrobium flowers is challenging because of the high levels of pigment, polysaccharides, and polyphenols. In the present study, an efficient CTAB method for RNA extraction from the pigment-rich flowers of Dendrobium was optimised. The optimised method yielded high quantities of RNA (10.1-12.9 µg/g). Spectrophotometric values of A260/280 in the range of 2.2 to 2.4 and A260/230 values of 2.0 suggested that the isolated RNA was free of polyphenols, polysaccharides, and protein contaminants. RNA integrity numbers determined by microfluidics were in the range of 7.9-8.9 indicative of intact RNA. In the improved method, the addition of 3 M NaCl and 3% PVP-10 in the extraction buffer, followed by an incubation period of 45 min at 65 °C, eliminated most of the polysaccharides, polyphenolic compounds, and denatured protein. Extraction with phenol:chloroform:isoamyl alcohol (125:24:1) effectively removed pigments from the aqueous phase, while the precipitation of RNA with lithium chloride minimised the co-precipitation of protein, DNA, and polysaccharide and resulted in the extraction of high quality of RNA. The suitability of the RNA for downstream processing was confirmed via RT-PCR amplification of Chalcone synthase gene from cDNA prepared from RNA isolated from different developmental stages of the flower of a Dendrobium hybrid. The present method will be highly useful for the isolation of RNA from pigment, polyphenol, and polysaccharide-rich plant tissues.
    Matched MeSH terms: Pentanols
  8. Lasekan O, Dabaj F, Muniandy M, Juhari NH, Lasekan A
    BMC Chem, 2021 Mar 13;15(1):16.
    PMID: 33714268 DOI: 10.1186/s13065-021-00743-4
    BACKGROUND: To evaluate the impact of cold fermentation time on bagel rolls, the key aroma-active compounds in the volatile fractions obtained from three different bagel rolls through solvent assisted flavor evaporation (SAFE) were sequentially characterized by an aroma extract dilution analysis (AEDA), quantified by stable isotope dilution and analyzed by odor activity values (OAVs) respectively.

    RESULTS: Findings revealed 40 aroma-active compounds with flavor dilution (FD) factor ranges of 2-1024. Of these, 22 compounds (FD ≥ 16) were quantified by stable isotope dilution assays (SIDA). Subsequent analysis of the 22 compounds by odor activity values (OAVs) revealed 14 compounds with OAVs ≥ 1 and the highest concentrations were obtained for 2,3-butanedione, 2-phenylethanol, 3-methylbutanal and acetoin respectively. Two recombination models of the bagels (i.e. 24 h and 48 h bagels) showed similarity to the corresponding bagels. Omission tests confirmed that 2,3-butanedione (buttery), acetoin (buttery), 2-acetyl-1-pyrroline (roasty), 5-methyl-2-furanmethanol (bread-like), (Z)-4-heptenal (biscuit-like) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, were the key aroma compounds. Additionally, acetic acid, butanoic acid, 2-phenylethanol (honey-like), 3-methylbutanoic acid, 2/3-methylbutanal, vanillin, 3-methylbutanol, methional were also important odorants of the bagel.

    CONCLUSION: Whilst the long, cold fermented bagels exhibited roasty, malty, buttery, baked potato-like, smoky and biscuit-like notes, the control bagels produced similar but less intense odor notes.

    Matched MeSH terms: Pentanols
  9. Nur Aimi, R., Abu Bakar, F., Dzulkifly, M.H.
    MyJurnal
    Nipa sap or air nira is a sweet natural beverage obtained from a type of palm tree, Nypa fruticans.
    It is readily and spontaneously fermented resulting in the development of alcoholic fermentation products. Objective of this study is to determine the volatile compounds (VOCs) responsible for the aroma in fresh and fermented nipa sap. The sap was left for natural fermentation at 30ºC for 63 days. VOCs of the sap were analysed using static headspace gas chromatography-mass spectrometry (GC-MS). Fresh nipa sap contained ethanol (83.43%), diacetyl (0.59%), and esters
    (15.97%). Fermented nipa sap contained alcohols (91.16 – 98.29%), esters (1.18 – 8.14%), acetoin (0.02 – 0.7%), diacetyl (0.04 – 0.06%), and acetic acid (0.13 – 0.68%). Concentration of ethanol in fresh nipa sap increased from 0.11% (v/v) to 6.63% (v/v) during the fermentation, and slightly decreased to 5.73% (v/v) at day 63. No higher alcohols were detected in the fresh nipa sap. Concentration of 1-propanol and 2-methylpropanol were constant throughout the fermentation with average of 0.004 to 0.006% (v/v) and 0.0001 to 0.0009% (v/v), respectively. 3-methylbutanol increased during the fermentation process. The highest concentration (0.001% v/v) was recorded at day 35. This study has shown differences in VOCs types between fresh and fermented nipa sap.
    Matched MeSH terms: Pentanols
  10. Maiangwa J, Mohamad Ali MS, Salleh AB, Rahman RNZRA, Normi YM, Mohd Shariff F, et al.
    PeerJ, 2017;5:e3341.
    PMID: 28533982 DOI: 10.7717/peerj.3341
    The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD) of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol) and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA) for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent systems, which could lead to weaknesses in the catalytic H-bond network and most likely a drop in catalytic activity. The conformational variation of the lid domain caused by the solvent molecules influenced its gradual opening. Formation of additional hydrogen bonds and hydrophobic interactions indicates that the contribution of the cooperative network of interactions could retain the stability of the protein in some solvent systems. Time-correlated atomic motions were used to characterize the correlations between the motions of the atoms from atomic coordinates. The resulting cross-correlation map revealed that the organic solvent mixtures performed functional, concerted, correlated motions in regions of residues of the lid domain to other residues. These observations suggest that varying lengths of polar organic solvents play a significant role in introducing dynamic conformational diversity in proteins in a decreasing order of polarity.
    Matched MeSH terms: Pentanols
  11. Khounani Z, Abdul Razak NN, Hosseinzadeh-Bandbafha H, Madadi M, Sun F, Mohammadi P, et al.
    Environ Res, 2024 May 01;248:118286.
    PMID: 38280524 DOI: 10.1016/j.envres.2024.118286
    This study assesses the environmental impact of pine chip-based biorefinery processes, focusing on bioethanol, xylonic acid, and lignin production. A cradle-to-gate Life Cycle Assessment (LCA) is employed, comparing a novel biphasic pretreatment method (p-toluenesulfonic acid (TsOH)/pentanol, Sc-1) with conventional sulfuric acid pretreatment (H2SO4, Sc-2). The analysis spans biomass handling, pretreatment, enzymatic hydrolysis, yeast fermentation, and distillation. Sc-1 yielded an environmental impact of 1.45E+01 kPt, predominantly affecting human health (96.55%), followed by ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed 32.61%, 29.28%, and 38.11% to the total environmental burdens, respectively. Sc-2 resulted in an environmental burden of 1.64E+01 kPt, with a primary impact on human health (96.56%) and smaller roles for ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed differently at 22.59%, 12.5%, and 64.91%, respectively. Electricity generation was predominant in both scenarios, accounting for 99.05% of the environmental impact, primarily driven by its extensive usage in biomass handling and pretreatment processes. Sc-1 demonstrated a 13.05% lower environmental impact than Sc-2 due to decreased electricity consumption and increased bioethanol and xylonic acid outputs. This study highlights the pivotal role of pretreatment methods in wood-based biorefineries and underscores the urgency of sustainable alternatives like TsOH/pentanol. Additionally, adopting greener electricity generation, advanced technologies, and process optimization are crucial for reducing the environmental footprint of waste-based biorefineries while preserving valuable bioproduct production.
    Matched MeSH terms: Pentanols
  12. Ghalib, H., Abdullah, I., Daik, R.
    MyJurnal
    Conducting polypyrrole (PPy) nanoparticles were synthesized by chemical oxidative polymerization of pyrrole in aqueous solution containing ferric sulfate (Fe2(SO4)3), anionic surfactants (sodium dodecylbenzene-sulfonate (NaDBS) or sodium dodecyl sulfate (SDS)), 1-pentanol as the oxidant, dopant and co-emulsifier, respectively. The polymerization was carried out at 0 ºC and 25 ºC. Fourier transform infrared spectroscopy (FTIR) and elemental analysis indicated that anionic surfactants were successfully incorporated into the PPy backbone. Incorporation of anionic surfactants caused enhanced electrical conductivity, increased yield, decreased the size of particles as well as improved the thermal stability of the resultant PPy. The presence of anionic surfactant seems to inhibit undesirable side reactions so as to improve the regularity of the PPy backbone. Globular PPy particles were obtained with diameter ranged from 40 to 118 nm as revealed by field emission scanning electron microscopy (FE-SEM) and conductivity of 7.89×10-4 –2.35×10-2 S cm-1, as measured using impedance analyzer. It was found that polymerization at low temperature (0 ºC) produced PPy particles with smaller size and higher conductivity. The sodium dodecyl sulfate-doped PPy (SDS-doped PPy) exhibited higher conductivity than that of the sodium dodecylbenzenesulfonate-doped PPy (NaDBS-doped PPy), due to the bulkiness of NaDBS as compared to SDS.
    Matched MeSH terms: Pentanols
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links