Displaying all 5 publications

Abstract:
Sort:
  1. Islam MT, Rahman MA, Saeed M, Ul-Haq Z, Alam MJ, Mondal M, et al.
    Cell Mol Biol (Noisy-le-grand), 2020 Jun 25;66(4):243-249.
    PMID: 32583783
    Phytol (PHY), a chlorophyll-derived diterpenoid, exhibits numerous pharmacological properties, including antioxidant, antimicrobial, and anticancer activities. This study evaluates the anti-diarrheal effect of phytol (PHY) along with its possible mechanism of action through in-vivo and in-silico models. The effect of PHY was investigated on castor oil-induced diarrhea in Swiss mice by using prazosin, propranolol, loperamide, and nifedipine as standards with or without PHY. PHY at 50 mg/kg (p.o.) and all other standards exhibit significant (p < 0.05) anti-diarrheal effect in mice. The effect was prominent in the loperamide and propranolol groups. PHY co-treated with prazosin and propranolol was found to increase in latent periods along with a significant reduction in diarrheal section during the observation period than other individual or combined groups. Furthermore, molecular docking studies also suggested that PHY showed better interactions with the α- and β-adrenergic receptors, especially with α-ADR1a and β-ADR1. In the former case, PHY showed interaction with hydroxyl group of Ser192 at a distance of 2.91Å, while in the latter it showed hydrogen bond interactions with Thr170 and Lys297 with a distance of 2.65 and 2.72Å, respectively. PHY exerted significant anti-diarrheal effect in Swiss mice, possibly through blocking α- and β-adrenergic receptors.
    Matched MeSH terms: Phytol/pharmacology; Phytol/therapeutic use*
  2. Swamy MK, Sinniah UR, Akhtar MS
    PMID: 26783409 DOI: 10.1155/2015/506413
    We investigated the effect of different solvents (ethyl acetate, methanol, acetone, and chloroform) on the extraction of phytoconstituents from Lantana camara leaves and their antioxidant and antibacterial activities. Further, GC-MS analysis was carried out to identify the bioactive chemical constituents occurring in the active extract. The results revealed the presence of various phytocompounds in the extracts. The methanol solvent recovered higher extractable compounds (14.4% of yield) and contained the highest phenolic (92.8 mg GAE/g) and flavonoid (26.5 mg RE/g) content. DPPH radical scavenging assay showed the IC50 value of 165, 200, 245, and 440 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. The hydroxyl scavenging activity test showed the IC50 value of 110, 240, 300, and 510 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. Gram negative bacterial pathogens (E. coli and K. pneumoniae) were more susceptible to all extracts compared to Gram positive bacteria (M. luteus, B. subtilis, and S. aureus). Methanol extract had the highest inhibition activity against all the tested microbes. Moreover, methanolic extract of L. camara contained 32 bioactive components as revealed by GC-MS study. The identified major compounds included hexadecanoic acid (5.197%), phytol (4.528%), caryophyllene oxide (4.605%), and 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (3.751%).
    Matched MeSH terms: Phytol
  3. Murugesu S, Khatib A, Ahmed QU, Ibrahim Z, Uzir BF, Benchoula K, et al.
    Toxicol Rep, 2019;6:1148-1154.
    PMID: 31993329 DOI: 10.1016/j.toxrep.2019.10.020
    Clinacanthus nutans, an herbal shrub belonging to the Acanthaceae family, is traditionally used as a functional food to treat various ailments in Malaysia and Indonesia. Although the polar fraction of this plant shows non-toxic effect, the toxicity of the non-polar extract is not reported so far. The present study aimed to assess the toxic effect and determine the lethal concentration of this non-polar fraction using zebrafish embryos. The n-hexane fraction was partitioned from the crude extract of C. nutans obtained using 80% methanolic solution. After spawning of the adult male and female zebrafish, the eggs were collected, transferred into a 96-well plate and incubated with the n-hexane fraction at concentrations of 15.63 μg/ml, 31.25 μg/ml, 62.5 μg/ml, 125 μg/ml, 250 μg/ml and 500 μg/ml in 2% DMSO. The survival and sublethal endpoint were assessed, the mortality and hatchability rates were calculated based on microscopic observation, while the heartbeat rate was measured using DanioScope software. The median lethal concentration (LC50) of the C. nutans n-hexane fraction, which was determined using probit analysis, was calculated to be 75.49 μg/mL, which is harmful. Moreover, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of palmitic acid, phytol, hexadecanoic acid, 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol and stigmasterol in the n-hexane fraction.
    Matched MeSH terms: Phytol
  4. Malek SN, Shin SK, Wahab NA, Yaacob H
    Molecules, 2009;14(5):1713-24.
    PMID: 19471192 DOI: 10.3390/molecules14051713
    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.
    Matched MeSH terms: Phytol/pharmacology
  5. Mainasara MM, Abu Bakar MF, Md Akim A, Linatoc AC, Abu Bakar FI, Ranneh YKH
    PMID: 33505506 DOI: 10.1155/2021/8826986
    Breast cancer is among the most commonly diagnosed cancer and the leading cause of cancer-related death among women globally. Malaysia is a country that is rich in medicinal plant species. Hence, this research aims to explore the secondary metabolites, antioxidant, and antiproliferative activities of Dioscorea bulbifera leaf collected from Endau Rompin, Johor, Malaysia. Antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays, while the cytotoxicity of D. bulbifera on MDA-MB-231 and MCF-7 breast cancer cell lines was tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell cycle analysis and apoptosis were assessed using flow cytometry analysis. Phytochemical profiling was conducted using gas chromatography-mass spectrometry (GC-MS). Results showed that methanol extract had the highest antioxidant activity in DPPH, FRAP, and ABTS assays, followed by ethyl acetate and hexane extracts. D. bulbifera tested against MDA-MB-231 and MCF-7 cell lines showed a pronounced cytotoxic effect with IC50 values of 8.96 μg/mL, 6.88 μg/mL, and 3.27 μg/mL in MCF-7 and 14.29 μg/mL, 11.86 μg/mL, and 7.23 μg/mL in MDA-MB-231, respectively. Cell cycle analysis also indicated that D. bulbifera prompted apoptosis at various stages, and a significant decrease in viable cells was detected within 24 h and substantially improved after 48 h and 72 h of treatment. Phytochemical profiling of methanol extract revealed the presence of 39 metabolites such as acetic acid, n-hexadecanoic acid, acetin, hexadecanoate, 7-tetradecenal, phytol, octadecanoic acid, cholesterol, palmitic acid, and linolenate. Hence, these findings concluded that D. bulbifera extract has promising anticancer and natural antioxidant agents. However, further study is needed to isolate the bioactive compounds and validate the effectiveness of this extract in the In in vivo model.
    Matched MeSH terms: Phytol
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links