Displaying all 20 publications

Abstract:
Sort:
  1. Kow CS, Ramachandram DS, Hasan SS
    Angiogenesis, 2023 Nov;26(4):481-483.
    PMID: 37530975 DOI: 10.1007/s10456-023-09889-2
    Imatinib, an ABL tyrosine-kinase inhibitor, shows promise in restoring endothelial barrier function in patients with COVID-19, thus, preventing cytokine leakage from the alveolar compartment to the systemic compartment. COVID-19 is characterized by an alveolar cytokine storm, and imatinib has been shown to strengthen the endothelial barrier and mitigate alveolar inflammatory responses by modulating NF-κB signaling. Incorporating imatinib into COVID-19 treatment strategies offers a novel approach to safeguard the endothelial barrier and address the complex pathophysiology of the disease, including its potential implications in long COVID. Given that endothelial dysfunction plays a central role in COVID-19 progression and long COVID development, protecting the endothelial barrier during acute infection is crucial in preventing the persistent endothelial dysfunction associated with long COVID.
    Matched MeSH terms: Piperazines/pharmacology
  2. Tan HM
    Int. J. Androl., 2000;23 Suppl 2:87-8.
    PMID: 10849506
    The quest for improving and maintaining sexual function has been going on since time immemorial. The advent of an effective oral drug, sildenafil, has brought about unprecedented open discussion on male erectile dysfunction, and gas accelerated the pace of development of new therapies for erectile dysfunction. New knowledge in the physiology of sexual function has enabled researchers to target drug treatment at the whole network of the central nervous system and the numerous cascadic enzymatic reactions leading to relaxation of the corporal smooth muscle. One of the brightest potential applications of future molecular technology in the study of erectile dysfuction is in the utilization of gene therapy.
    Matched MeSH terms: Piperazines/pharmacology
  3. Zin NM, Baba MS, Zainal-Abidin AH, Latip J, Mazlan NW, Edrada-Ebel R
    Drug Des Devel Ther, 2017;11:351-363.
    PMID: 28223778 DOI: 10.2147/DDDT.S121283
    Endophytic Streptomyces strains are potential sources for novel bioactive molecules. In this study, the diketopiperazine gancidin W (GW) was isolated from the endophytic actinobacterial genus Streptomyces, SUK10, obtained from the bark of Shorea ovalis tree, and it was tested in vivo against Plasmodium berghei PZZ1/100. GW exhibited an inhibition rate of nearly 80% at 6.25 and 3.125 μg kg-1 body weight on day four using the 4-day suppression test method on male ICR strain mice. Comparing GW at both concentrations with quinine hydrochloride and normal saline as positive and negative controls, respectively, 50% of the mice treated with 3.125 μg kg-1 body weight managed to survive for more than 11 months after infection, which almost reached the life span of normal mice. Biochemical tests of selected enzymes and proteins in blood samples of mice treated with GW were also within normal levels; in addition, no abnormalities or injuries were found on internal vital organs. These findings indicated that this isolated bioactive compound from Streptomyces SUK10 exhibits very low toxicity and is a good candidate for potential use as an antimalarial agent in an animal model.
    Matched MeSH terms: Piperazines/pharmacology*
  4. Ahmad A, Sattar MA, Azam M, Abdulla MH, Khan SA, Hashmi F, et al.
    PLoS One, 2016;11(5):e0154995.
    PMID: 27191852 DOI: 10.1371/journal.pone.0154995
    The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.
    Matched MeSH terms: Piperazines/pharmacology
  5. Danial AM, Medina A, Sulyok M, Magan N
    Mycotoxin Res, 2020 May;36(2):225-234.
    PMID: 31960351 DOI: 10.1007/s12550-020-00388-7
    The objectives of this study were to determine the efficacy of metabolites of a Streptomyces strain AS1 on (a) spore germination, (b) mycelial growth, (c) control of mycotoxins produced by Penicillium verrucosum (ochratoxin A, OTA), Fusarium verticillioides (fumonisins, FUMs) and Aspergillus fumigatus (gliotoxin) and (d) identify the predominant metabolites involved in control. Initial screening showed that the Streptomyces AS1 strain was able to inhibit the mycelial growth of the three species at a distance, due to the release of secondary metabolites. A macroscopic screening system showed that the overall Index of Dominance against all three toxigenic fungi was inhibition at a distance. Subsequent studies showed that the metabolite mixture from the Streptomyces AS1 strain was very effective at inhibiting conidial germination of P. verrucosum, but less so against conidia of A. fumigatus and F. verticillioides. The efficacy was confirmed in studies on a conducive semi-solid YES medium in BioScreen C assays. Using the BioScreen C and the criteria of Time to Detection (TTD) at an OD = 0.1 showed good efficacy against P. verrucosum when treated with the Streptomyces AS1 extract at 0.95 and 0.99 water activity (aw) when compared to the other two species tested, indicating good efficacy. The effective dose for 50% control of growth (ED50) at 0.95 and 0.99 aw were approx. 0.005 ng/ml and 0.15 μg/ml, respectively, with the minimum inhibitory concentration (MIC) at both aw levels requiring > 40 μg/ml. In addition, OTA production was completely inhibited by 2.5 μg/ml AS1 extract at both aw levels in the in vitro assays. Ten metabolites were identified with four of these being predominant in concentrations > 2 μg/g dry weight biomass. These were identified as valinomycin, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val) and brevianamide F.
    Matched MeSH terms: Piperazines/pharmacology
  6. Iwata N, Ishigooka J, Kim WH, Yoon BH, Lin SK, Sulaiman AH, et al.
    Schizophr Res, 2020 01;215:408-415.
    PMID: 31471246 DOI: 10.1016/j.schres.2019.07.055
    BACKGROUND: Blonanserin is a second-generation antipsychotic used for the treatment of schizophrenia. This study determined the efficacy, safety and pharmacokinetics of a blonanserin transdermal patch in patients with acutely exacerbated schizophrenia.

    METHODS: This double-blind, multicenter, phase 3 study consisted of a 1-week observation period during which patients were treated with two patches of placebo, followed by a 6-week double-blind period where patients were randomized (1:1:1) to receive once-daily blonanserin 40 mg, blonanserin 80 mg, or placebo patches. The primary endpoint was the change from baseline in the total Positive and Negative Symptom Scale (PANSS) score. Safety assessments included treatment-emergent adverse events (TEAEs).

    RESULTS: Between December 2014 and October 2018, patients were recruited and randomly assigned to blonanserin 40 mg (n = 196), blonanserin 80 mg (n = 194), or placebo (n = 190); of these, 77.2% completed the study. Compared with placebo, blonanserin significantly improved PANSS total scores at 6 weeks (least square mean [LSM] difference vs placebo: -5.6 with blonanserin 40 mg; 95% confidence interval [CI] -9.6, -1.6; adjusted p = 0.007, and - 10.4 with blonanserin 80 mg; 95% CI -14.4, -6.4; adjusted p 

    Matched MeSH terms: Piperazines/pharmacology*
  7. Abbasi MA, Nazeer MM, Rehman A, Siddiqui SZ, Hussain G, Shah SA, et al.
    Pak J Pharm Sci, 2018 Nov;31(6):2477-2485.
    PMID: 30473521
    The aim of the present research work was synthesis of some 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives and to ascertain their antibacterial potential. The cytotoxicity of these molecules was also checked to find out their utility as possible therapeutic agents. The synthesis was initiated by reacting furyl(-1-piperazinyl)methanone (1) in N,N-dimethylformamide (DMF) and lithium hydride with different aralkyl halides (2a-j) to afford 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives (3a-j). The structural confirmation of all the synthesized compounds was done by IR, EI-MS, 1H-NMR and 13C-NMR spectral techniques and through elemental analysis. The results of in vitro antibacterial activity of all the synthesized compounds were screened against Gram-negative (S. typhi, E. coli, P. aeruginosa) and Gram-positive (B. subtilis, S. aureus) bacteria and were found to be decent inhibitors. Amongst the synthesized molecules, 3e showed lowest minimum inhibitory concentration MIC = 7.52±0.μg/mL against S. Typhi, credibly due to the presence of 2-bromobenzyl group, relative to the reference standard, ciprofloxacin, having MIC = 7.45±0.58μg/mL.
    Matched MeSH terms: Piperazines/pharmacology*
  8. Voon YL, Wong PF, Khoo ASB
    Mini Rev Med Chem, 2018;18(2):173-183.
    PMID: 28714398 DOI: 10.2174/1389557517666170717125821
    Nasopharyngeal carcinoma (NPC) is a form of head and neck cancer of multifactorial etiologies that is highly prevalent among men in the population of Southern China and Southeast Asia. NPC has claimed many thousands of lives worldwide; but the low awareness of NPC remains a hindrance in early diagnosis and prevention of the disease. NPC is highly responsive to radiotherapy and chemotherapy, but radiocurable NPC is still dependent on concurrent treatment of megavoltage radiotherapy with chemotherapy. Despite a significant reduction in loco-regional and distant metastases, radiotherapy alone has failed to provide a significant improvement in the overall survival rate of NPC, compared to chemotherapy. In addition, chemo-resistance persists as the major challenge in the management of metastatic NPC although the survival rate of advanced metastatic NPC has significantly improved with the administration of chemotherapy adjunctive to radiotherapy. In this regard, targeted molecular therapy could be explored for the discovery of alternative NPC therapies. Nutlin-3, a small molecule inhibitor that specifically targets p53-Mdm2 interaction offers new therapeutic opportunities by enhancing cancer cell growth arrest and apoptosis through the restoration of the p53-mediated tumor suppression pathway while producing minimal cytotoxicity and side effects. This review discusses the potential use of Nutlin-3 as a p53-activating drug and the future directions of its clinical research for NPC treatment.
    Matched MeSH terms: Piperazines/pharmacology*
  9. Taha M, Irshad M, Imran S, Chigurupati S, Selvaraj M, Rahim F, et al.
    Eur J Med Chem, 2017 Dec 01;141:530-537.
    PMID: 29102178 DOI: 10.1016/j.ejmech.2017.10.028
    Piperazine Sulfonamide analogs (1-19) have been synthesized, characterized by different spectroscopic techniques and evaluated for α-amylase Inhibition. Analogs 1-19 exhibited a varying degree of α-amylase inhibitory activity with IC50 values ranging in between 1.571 ± 0.05 to 3.98 ± 0.397 μM when compared with the standard acarbose (IC50 = 1.353 ± 0.232 μM). Compound 1, 2, 3 and 7 showed significant inhibitory effects with IC50 value 2.348 ± 0.444, 2.064 ± 0.04, 1.571 ± 0.05 and 2.118 ± 0.204 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
    Matched MeSH terms: Piperazines/pharmacology*
  10. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
    Matched MeSH terms: Piperazines/pharmacology*
  11. Al-Jamal HA, Jusoh SA, Yong AC, Asan JM, Hassan R, Johan MF
    Asian Pac J Cancer Prev, 2014;15(11):4555-61.
    PMID: 24969884
    BACKGROUND: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib.

    MATERIALS AND METHODS: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and IC50 values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting.

    RESULTS: The IC50 for imatinib on K562 was 362 nM compared to 3,952 nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down- regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562.

    CONCLUSIONS: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

    Matched MeSH terms: Piperazines/pharmacology*
  12. Loh SW, Ng WL, Yeo KS, Lim YY, Ea CK
    PLoS One, 2014;9(7):e103915.
    PMID: 25079219 DOI: 10.1371/journal.pone.0103915
    H3K9 methylation is one of the essential histone post-translational modifications for heterochromatin formation and transcriptional repression. Recently, several studies have demonstrated that H3K9 methylation negatively regulates the type I interferon response.
    Matched MeSH terms: Piperazines/pharmacology
  13. Kazi RN, Munavvar AS, Abdullah NA, Khan AH, Johns EJ
    Auton Autacoid Pharmacol, 2009 Jan;29(1-2):25-31.
    PMID: 19302553 DOI: 10.1111/j.1474-8673.2009.00428.x
    1 Increased renal vascular resistance is one renal functional abnormality that contributes to hypertension, and alpha(1)-adrenoceptors play a pivotal role in modulating this renal vascular resistance. This study investigates the functional contribution of alpha(1)-adrenoceptor subtypes in the renal cortical vasculature of Wistar-Kyoto rats on a normal sodium diet (WKYNNa) compared with those given saline to drink for 6 weeks (WKYHNa). 2 The renal cortical vascular responses to the adrenergic agonists noradrenaline (NA), methoxamine (ME) and phenylephrine (PE) were measured in WKYHNa and WKYNNa rats either in the absence (the control phase) or presence of chloroethylclonidine (CEC), an alpha(1B)-adrenoceptor antagonist, 5-methylurapidil (5-MeU), an alpha(1A) antagonist, or BMY7378, an alpha(1D) antagonist. 3 Results showed a greater renal cortical vascular sensitivity to NA, PE and ME in the WKYHNa compared with WKYNNa rats (P < 0.05). Moreover, 5-MeU and BMY7378 attenuated adrenergically induced renal cortical vasoconstriction in WKYHNa and WKYNNa rats; this response was largely blunted in CEC-treated WKYHNa rats (all P < 0.05) but not in CEC-treated WKYNNa rats. 4 The data suggest that irrespective of dietary sodium content, in Wistar-Kyoto rats alpha(1A)- and alpha(1D)-subtypes are the major alpha(1)-adrenoceptors in renal cortical vasculature; however, there appears to be a functional involvement of alpha(1B)-adrenoceptors in the WKYHNa rats.
    Matched MeSH terms: Piperazines/pharmacology
  14. Armenia, Sattar MA, Abdullah NA, Khan MA, Johns EJ
    Auton Autacoid Pharmacol, 2008 Jan;28(1):1-10.
    PMID: 18257746 DOI: 10.1111/j.1474-8673.2007.00412.x
    1 The present study investigated the effect of streptozotocin-induced diabetes on alpha(1)-adrenoceptor subtypes in rat renal resistance vessels. 2 Studies on renal haemodynamics were carried out 7 days after the last streptozotocin. Changes in renal blood flow were recorded in response to electrical stimulation of the renal nerve (RNS) and a range of adrenergic agonists; noradrenaline (NA), phenylephrine (PE) and methoxamine (MTX), either in the absence or the presence of nitrendipine (Nit), 5-methylurapidil (MEU), chlorethylclonidine (CEC) or BMY 7378. 3 In non-diabetic animals, Nit, MEU and BMY 7378 significantly attenuated renal vasoconstriction induced by adrenergic agonists, while CEC showed a significant accentuation in RNS-induced responses without having a significant effect on responses to adrenergic agonists. In diabetic rats, renal vasoconstriction was also significantly reduced in Nit-, MEU- and BMY 7378-treated groups and CEC potentiated RNS-induced contractions caused a change similar to that observed in non-diabetic rats. BMY 7378 significantly (P < 0.05) attenuated the PE- and MTX-induced vasoconstrictions but did not cause any significant (P > 0.05) alteration in the RNS- and NA-induced responses. 4 The results showed functional co-existence of alpha(1A)- and alpha(1D)-adrenoceptors in the renal vasculature of SD rats irrespective of the presence of diabetes. A possible minor contribution of prejunctional alpha-adrenoceptor subtype has also been suggested in either experimental group, particularly possible functional involvement of alpha(1B)-adrenoceptor subtypes in non-diabetic SD rats.
    Matched MeSH terms: Piperazines/pharmacology
  15. Khan AH, Sattar MA, Abdullah NA, Johns EJ
    Eur J Pharmacol, 2007 Aug 13;569(1-2):110-8.
    PMID: 17559832
    This study investigated whether the alpha(1)-adrenoceptor subtype(s) mediating the vasoconstrictor actions of the renal sympathetic nerves were altered in rats with cisplatin-induced renal failure. Male Wistar Kyoto rats were used and half received cisplatin (5 mg/kg i.p.) to induce renal failure and were taken for study 7 days later. The renal blood flow reductions caused by electrical renal nerve stimulation and close intra-renal administration of noradrenaline, phenylephrine and methoxamine were determined before and after amlodopine (AMP), 5-methylurapidil (MeU), chloroethylclonidine (CEC) or BMY 7378. Water intake and creatinine clearance were decreased (P<0.05) by 40-50% while fractional excretion of sodium was increased two-fold in the cisplatin treated rats. Mean arterial pressure was higher, 110+/-2 versus 102+/-3 mmHg and renal blood flow was lower, 10.7+/-0.9 versus 18.9+/-0.1 ml/min/kg in the renal failure rats (both P<0.05). AMP, MeU and BMY 7378 decreased (all P<0.05) the adrenergically induced renal vasoconstrictor responses in the renal failure groups by 30 to 50% and in normal rats by 20 to 40%. In the presence of CEC, renal nerve stimulation and noradrenaline and methoxamine induced renal vasoconstrictor responses were enhanced (all P<0.05) in the renal failure but not in the normal rats. These data showed that alpha(1A)- and alpha(1D)-adrenoceptors were the major subtypes in mediating adrenergically induced renal vasoconstriction but there was no substantial shift in subtype in renal failure. The contribution of alpha(1B)-adrenoceptor subtypes either pre- or post-synaptic appeared to be raised in the renal failure rats.
    Matched MeSH terms: Piperazines/pharmacology
  16. Armenia A, Sattar MA, Abdullah NA, Khan MA, Johns EJ
    Acta Pharmacol Sin, 2008 May;29(5):564-72.
    PMID: 18430364 DOI: 10.1111/j.1745-7254.2008.00788.x
    This study investigates the subtypes of the alpha1-adrenoceptor mediating the adrenergically-induced renal vasoconstrictor responses in streptozotocin-induced diabetic and non-diabetic 2-kidney one clip (2K1C) Goldblatt hypertensive rats.
    Matched MeSH terms: Piperazines/pharmacology
  17. Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Abdullah NA, et al.
    Can J Physiol Pharmacol, 2014 Dec;92(12):1029-35.
    PMID: 25403946 DOI: 10.1139/cjpp-2014-0236
    This study investigated the role of α1D-adrenoceptor in the modulation of renal haemodynamics in rats with left ventricular hypertrophy (LVH). LVH was established in Wistar-Kyoto (WKY) rats with isoprenaline (5.0 mg · (kg body mass)(-1), by subcutaneous injection every 72 h) and caffeine (62 mg · L(-1) in drinking water, daily for 14 days). Renal vasoconstrictor responses were measured for noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) before and immediately after low or high dose intrarenal infusions of BMY 7378, a selective α1D-adrenoceptor blocker. The rats with LVH had higher mean arterial blood pressure and circulating NA levels, but lower renal cortical blood perfusion compared with the control group (all P < 0.05). In the LVH group, the magnitude of the renal vasoconstrictor response to ME was blunted, but not the response to NA or PE (P < 0.05), compared with the control group (LVH vs. C, 38% vs. 50%). The magnitude of the drop in the vasoconstrictor responses to NA, PE, and ME in the presence of a higher dose of BMY 7378 was significantly greater in the LVH group compared with the control group (LVH vs. C, 45% vs. 25% for NA, 52% vs. 33% for PE, 66% vs. 53% for ME, all P < 0.05). These findings indicate an impaired renal vasoconstrictor response to adrenergic agonists during LVH. In addition, the α1D-adrenoceptor subtype plays a key role in the modulation of vascular responses in this diseased state.
    Matched MeSH terms: Piperazines/pharmacology
  18. Salga MS, Ali HM, Abdulla MA, Abdelwahab SI
    Chem Biol Interact, 2012 Jan 25;195(2):144-53.
    PMID: 22178775 DOI: 10.1016/j.cbi.2011.11.008
    Zinc complexes were reported to have anti-ulcer activity and used as drug for the treatment of gastrointestinal disorders. A novel compound dichlorido-zinc(II)-4-(2-(5-methoxybenzylidene amino)ethyl)piperazin-1-iumphenolate (ZnHMS) was synthesized, characterized and evaluated for its gastroprotective activity against ethanol-induced ulcer in rats. Gross and microscopic lesions, histochemical staining of glycogen storage, biochemical and immunological parameters were taken into consideration. Oral administration of ZnHMS (30 and 60 mg/kg; 14 days) dose-dependently inhibited gastric lesions. It significantly increased the mucus content and total acidity compared to the control group (P<0.01). Serum levels of aspartate (AST), alanine (ALT) transaminases, pro-inflammatory interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and anti-inflammatory interleukin-10 (IL-10) in the rats exposed to ethanol induced ulceration have been altered. ZnHMS considerably enhances (P<0.05) the protection of gastric epithelia by modulating the acute alterations of AST, ALT, IL-6, IL-10, TNF-α and stomach glycogen. Interestingly, ZnHMS did interfere with the natural release of nitric oxide. In addition, acute toxicity study revealed no abnormal sign to the rats treated with ZnHMS (2000 mg/kg). These findings suggest that the gastroprotective activity of ZnHMS might contribute in adjusting the inflammatory cytokine-mediated oxidative damage to the gastric mucosa.
    Matched MeSH terms: Piperazines/pharmacology
  19. Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, et al.
    Comput Biol Chem, 2018 Dec;77:72-86.
    PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007
    The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
    Matched MeSH terms: Piperazines/pharmacology*
  20. Shao YM, Ma X, Paira P, Tan A, Herr DR, Lim KL, et al.
    PLoS One, 2018;13(1):e0188212.
    PMID: 29304113 DOI: 10.1371/journal.pone.0188212
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM), hepatotoxicity (up to 30 μM) or cardiotoxicity (up to 30 μM).
    Matched MeSH terms: Piperazines/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links