Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Ahmad R, Shaari K, Lajis NH, Hamzah AS, Ismail NH, Kitajima M
    Phytochemistry, 2005 May;66(10):1141-7.
    PMID: 15924918
    Four new furanoanthraquinones, 2-hydroxymethyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[1'-hydroxy-2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[2'-1-hydroxy-1-methylethyl)-dihydrofurano]anthraquinone and 2-methyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano] anthraquinone or capitellataquinone A-D and four known anthraquinones, rubiadin, anthragallol 2-methyl ether, alizarin 1-methyl ether and digiferruginol, together with scopoletin were isolated from the stems of Hedyotis capitellata Wall (Rubiaceae). Lucidin-3-O-beta-glucoside was isolated from the roots of the plant. Characterization of the new compounds was carried out by extensive NMR studies using FGCOSY, FGHMQC, FGHMBC and DEPT-135 in addition to other spectroscopic methods.
    Matched MeSH terms: Plant Stems/chemistry
  2. Jani NA, Sirat MH, Ali NM, Aziz A
    Nat Prod Commun, 2013 Apr;8(4):513-4.
    PMID: 23738467
    The chemical compositions of the essential oil of the rhizome, leaf and stem of Hornstedtia leonurus Retz., collected from Negeri Sembilan, Malaysia,are reported for the first time. The essential oils were extracted using hydrodistillation and analyzed by gas chromatography (GC-FID) and gas chromatography/mass spectrometry (GC/MS). Seventeen (96.4%), thirteen (89.2%) and nine components (98.8%) were successfully identified from the rhizome, stem and leaf oils, respectively. Phenylpropanoids were found to be the major fraction, with methyleugenol being the most abundant compound in all oils with percentage compositions of 76.4% (rhizome), 80.3% (stem) and 74.5% (leaf).
    Matched MeSH terms: Plant Stems/chemistry
  3. Ishak MR, Sapuan SM, Leman Z, Rahman MZ, Anwar UM, Siregar JP
    Carbohydr Polym, 2013 Jan 16;91(2):699-710.
    PMID: 23121967 DOI: 10.1016/j.carbpol.2012.07.073
    Sugar palm (Arenga pinnata) is a multipurpose palm species from which a variety of foods and beverages, timber commodities, biofibres, biopolymers and biocomposites can be produced. Recently, it is being used as a source of renewable energy in the form of bio-ethanol via fermentation process of the sugar palm sap. Although numerous products can be produced from sugar palm, three products that are most prominent are palm sugar, fruits and fibres. This paper focuses mainly on the significance of fibres as they are highly durable, resistant to sea water and because they are available naturally in the form of woven fibre they are easy to process. Besides the recent advances in the research of sugar palm fibres and their composites, this paper also addresses the development of new biodegradable polymer derived from sugar palm starch, and presents reviews on fibre surface treatment, product development, and challenges and efforts on properties enhancement of sugar palm fibre composites.
    Matched MeSH terms: Plant Stems/chemistry*
  4. Kausar H, Sariah M, Saud HM, Alam MZ, Ismail MR
    Biodegradation, 2011 Apr;22(2):367-75.
    PMID: 20803236 DOI: 10.1007/s10532-010-9407-3
    Rice straw is produced as a by-product from rice cultivation, which is composed largely of lignocellulosic materials amenable to general biodegradation. Lignocellulolytic actinobacteria can be used as a potential agent for rapid composting of bulky rice straw. Twenty-five actinobacteria isolates were isolated from various in situ and in vitro rice straw compost sources. Isolates A2, A4, A7, A9 and A24 were selected through enzymatic degradation of starch, cellulose and lignin followed by the screening for their adaptability on rice straw powder amended media. The best adapted isolate (A7) was identified as Micromonospora carbonacea. It was able to degrade cellulose, hemicelluloses and carbon significantly (P ≤ 0.05) over the control. C/N ratio was reduced to 18.1 from an initial value of 29.3 in 6 weeks of composting thus having the potential to be used in large scale composting of rice straw.
    Matched MeSH terms: Plant Stems/chemistry*
  5. Lamaming J, Hashim R, Sulaiman O, Leh CP, Sugimoto T, Nordin NA
    Carbohydr Polym, 2015;127:202-8.
    PMID: 25965475 DOI: 10.1016/j.carbpol.2015.03.043
    In this study cellulose nanocrystals were isolated from oil palm trunk (Elaeis guineensis) using acid hydrolysis method. The morphology and size of the nanocrystals were characterized using scanning electron microscopy and transmission electron microscopy. The results showed that the nanocrystals isolated from raw oil palm trunk (OPT) fibers and hot water treated OPT fibers had an average diameter of 7.67 nm and 7.97 nm and length of 397.03 nm and 361.70 nm, respectively. Fourier Transform Infrared spectroscopy indicated that lignin and hemicellulose contents decreased. It seems that lignin was completely removed from the samples during chemical treatment. Thermogravimetric analysis demonstrated that cellulose nanocrystals after acid hydrolysis had higher thermal stability compared to the raw and hot water treated OPT fibers. The X-ray diffraction analysis increased crystallinity of the samples due to chemical treatment. The crystalline nature of the isolated nanocrystals from raw and hot water treated OPT ranged from 68 to 70%.
    Matched MeSH terms: Plant Stems/chemistry
  6. Yoshikawa K, Tao S, Arihara S
    J Nat Prod, 2000 Apr;63(4):540-2.
    PMID: 10785436
    The stem of Stephanotis floribunda afforded a new cyclic pentapeptide stephanotic acid (1), possessing a novel 6-(leucin-3'-yl) tryptophan skeleton. The structure of 1 was assigned on the basis of extensive NMR experiments and a chemical reaction and shown to be closely related to the bicyclic octapeptide moroidin (3), a toxin from Laportea moroides.
    Matched MeSH terms: Plant Stems/chemistry
  7. Akhtar MN, Lam KW, Abas F, Maulidiani, Ahmad S, Shah SA, et al.
    Bioorg Med Chem Lett, 2011 Jul 1;21(13):4097-103.
    PMID: 21641207 DOI: 10.1016/j.bmcl.2011.04.065
    Bioassay-guided extraction of the stem bark of Knema laurina showed the acetylcholinesterase (AChE) inhibitory activity of DCM and hexane fractions. Further repeated column chromatography of hexane and DCM fractions resulted in the isolation and purification of five alkenyl phenol and salicylic acid derivatives. New compounds, (+)-2-hydroxy-6-(10'-hydroxypentadec-8'(E)-enyl)benzoic acid (1) and 3-pentadec-10'(Z)-enylphenol (2), along with known 3-heptadec-10'(Z)-enylphenol (3), 2-hydroxy-6-(pentadec-10'(Z)-enyl)benzoic acid (4), and 2-hydroxy-6-(10'(Z)-heptadecenyl)benzoic acid (5) were isolated from the stem bark of this plant. Compounds (1-5) were tested for their acetylcholinesterase inhibitory activity. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and chemical derivatizations. Compound 5 showed strong acetylcholinesterase inhibitory activity with IC(50) of 0.573 ± 0.0260 μM. Docking studies of compound 5 indicated that the phenolic compound with an elongated side chain could possibly penetrate deep into the active site of the enzyme and arrange itself through π-π interaction, H-bonding, and hydrophobic contacts with some critical residues along the complex geometry of the active gorge.
    Matched MeSH terms: Plant Stems/chemistry*
  8. Adam FA, Mohd N, Rani H, Baharin B, Mohd Yusof MYP
    J Ethnopharmacol, 2021 Jun 28;274:113882.
    PMID: 33513418 DOI: 10.1016/j.jep.2021.113882
    ETHNOPHARMACOLOGICAL RELEVANCE: Salvadora persica L. chewing stick, commonly known as miswak is still being used as an oral hygiene tool for plaque control and prevention against gingivitis. Various studies have reported on the therapeutics and prophylactic effects particularly on periodontal disease. This review aimed to evaluate the effectiveness of S. persica chewing stick compared to the standard toothbrush for anti-plaque and anti-gingivitis.

    MATERIAL AND METHODS: A PRISMA-compliant systematic search of literature was done from the MEDLINE, CENTRAL, Science Direct, PubMed and Google Scholar. Literature that fulfilled eligibility criteria was identified. Data measuring plaque score and bleeding score were extracted. Qualitative and random-effects meta-analyses were conducted.

    RESULTS: From 1736 titles and abstracts screened, eight articles were utilized for qualitative analysis, while five were selected for meta-analysis. The pooled effect estimates of SMD and 95% CI were -0.07 [-0.60 to 0.45] with an χ2 statistic of 0.32 (p = 0.0001), I2 = 80% as anti-plaque function and 95% CI were -2.07 [-4.05 to -0.10] with an χ2 statistic of 1.67 (p = 0.02), I2 = 82%.

    CONCLUSION: S. persica chewing stick is a tool that could control plaque, comparable to a standard toothbrush. Further, it has a better anti-gingivitis effect and can be used as an alternative.

    Matched MeSH terms: Plant Stems/chemistry
  9. Lamaming J, Hashim R, Leh CP, Sulaiman O
    Carbohydr Polym, 2017 Jan 20;156:409-416.
    PMID: 27842840 DOI: 10.1016/j.carbpol.2016.09.053
    Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (<0.5%) and increased holocellulose (99.6%) of ozone-bleached cellulose. Water pre-hydrolyzed cellulose exhibited surface fibrillation and peeling off after acid hydrolysis process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites.
    Matched MeSH terms: Plant Stems/chemistry*
  10. Oladosu Y, Rafii MY, Abdullah N, Magaji U, Hussin G, Ramli A, et al.
    Biomed Res Int, 2016;2016:7985167.
    PMID: 27429981 DOI: 10.1155/2016/7985167
    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.
    Matched MeSH terms: Plant Stems/chemistry*
  11. Karunakaran T, Ee GC, Teh SS, Daud S, Mah SH, Lim CK, et al.
    Nat Prod Res, 2016 Jul;30(14):1591-7.
    PMID: 26710827 DOI: 10.1080/14786419.2015.1120727
    A new alkylated coumarin derivative, hexapetarin (1) along with three other xanthones, trapezifolixanthone (2), cudraxanthone G (3) and 1,3,7-trihydroxy-2,4-di (3-methyl-2-butenyl)xanthone (4), and four common triterpenoids, friedelin (5), stigmasterol (6), beta-sitosterol (7) and gamma-sitosterol (8) were isolated from the stem bark of Mesua hexapetala (Clusiaceae), a plant, native to Malaysia. The structures of these compounds were elucidated and determined using spectroscopic techniques such as NMR and MS. Anti-inflammatory activity assay indicated hexapetarin (1) to possess moderate anti-inflammatory activity, while 1,3,7-trihydroxy-2,4-di (3-methyl-2-butenyl)xanthone (4) gave very good activity.
    Matched MeSH terms: Plant Stems/chemistry*
  12. Ramaiya SD, Bujang JS, Zakaria MH
    ScientificWorldJournal, 2014;2014:167309.
    PMID: 25028673 DOI: 10.1155/2014/167309
    This study focused on total phenolic content (TPC) and antioxidant and antibacterial activities of the leaves and stems of Passiflora quadrangularis, P. maliformis, and P. edulis extracted using three solvents: petroleum ether, acetone, and methanol. The maximum extraction yields of antioxidant components from the leaves and stems were isolated using methanol extracts of P. edulis (24.28%) and P. quadrangularis (9.76%), respectively. Among the leaf extracts, the methanol extract of P. maliformis had the significantly highest TPC and the strongest antioxidant activity, whereas among the stem extracts, the methanol extract of P. quadrangularis showed the highest phenolic amount and possessed the strongest antioxidant activity. The antibacterial properties of the Passiflora species were tested using the disc diffusion method against 10 human pathogenic bacteria. The largest inhibition zone was observed for the methanol extract of P. maliformis against B. subtilis. Generally, extracts from the Passiflora species exhibit distinct inhibition against Gram-positive but not Gram-negative bacteria. Based on the generated biplot, three clusters of bacteria were designated according to their performance towards the tested extracts. The present study revealed that methanol extracts of the Passiflora contain constituents with significant phenolic, antioxidant, and antibacterial properties for pharmaceutical and nutraceutical uses.
    Matched MeSH terms: Plant Stems/chemistry
  13. Tan WN, Khairuddean M, Wong KC, Khaw KY, Vikneswaran M
    Fitoterapia, 2014 Sep;97:261-7.
    PMID: 24924287 DOI: 10.1016/j.fitote.2014.06.003
    A triflavanone, Garcineflavanone A (1) and a biflavonol, Garcineflavonol A (2) have been isolated from the stem bark of Garcinia atroviridis (Clusiaceae), collected in Peninsular Malaysia. Their structures were established using one and two-dimensional NMR, UV, IR and mass spectrometry and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Molecular docking studies of the isolated compounds were performed using docking procedure of AutoDock to disclose the binding interaction and orientation of these molecules into the active site gorge.
    Matched MeSH terms: Plant Stems/chemistry
  14. See I, Ee GC, Teh SS, Kadir AA, Daud S
    Molecules, 2014 Jun 04;19(6):7308-16.
    PMID: 24901833 DOI: 10.3390/molecules19067308
    A detailed chemical study on the ethyl acetate and methanol extracts of the stem bark of Garcinia mangostana resulted in the successful isolation of one new prenylated xanthone, mangaxanthone B (1), one new benzophenone, mangaphenone (2), and two known xanthones, mangostanin (3) and mangostenol (4). The structures of these compounds were elucidated through analysis of their spectroscopic data obtained using 1D and 2D NMR and MS techniques.
    Matched MeSH terms: Plant Stems/chemistry*
  15. Chua LS, Yap KC, Jaganath IB
    Nat Prod Commun, 2013 Dec;8(12):1725-9.
    PMID: 24555283
    The total phenolic content and radical scavenging activity of Andrographis paniculata has been investigated to estimate the amount of phenolic compounds and diterpene lactones, respectively in the plant extracts. The stem extracts exhibited higher total phenolic content and scavenging activity than those of the leaf extracts from both young and mature plants. A range of 19.6-47.8 mg extract of A. paniculata from different parts of the plant is equivalent to the scavenging activity exhibited by one mg of standard Trolox. HPLC-ESI-MS/MS was also used to identify simultaneously the phytochemicals from the leaves and stems of both young and mature plant samples. Of the identified compounds, seven of the sixteen diterpene lactones, three of the six flavonoids, five of the six phenolic acids and two cyclic acids are reported here for the first time for this species. Multivariate statistical approaches such as Hierarchiral Component Analysis (HCA) and Principle Component Analysis (PCA) have clustered the plant extracts into the leaf and stem groups, regardless of plant age. Further classification based on the phytochemical profiles revealed that mostly phenolic acids and flavonoids were from the young leaf extracts, and diterpenoids and their glycosides from the mature leaf extracts. However, the phytochemical profiles for the stems of both young and mature plants were not significantly different as presented in the dendrogram of HCA and the score plot of PCA. The marker for mature plants might be the m/z 557 ion (dihydroxyl dimethyl 19-[(beta-D-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide), whereas the m/z 521 ion (propyl neoandrographolide) could be the marker for leaf extracts.
    Matched MeSH terms: Plant Stems/chemistry
  16. Al-Mekhlafi NA, Shaaria K, Abas F, Jeyaraj EJ, Stanslas J, Khalivulla SI, et al.
    Nat Prod Commun, 2013 Apr;8(4):447-51.
    PMID: 23738449
    In the present study phytochemical investigation of the methanol extract of the stem bark of Horsfieldia superba led to the isolation of twenty compounds (1-20), of which three (1-3) were new. However, compounds 2 and 3 were previously reported as synthetic alpha,beta-lactones. The compounds were characterized as (-)-3,4',7-trihydroxy-3'-methoxyflavan (1), (-)-5,6-dihydro-6-undecyl-2H-pyran-2-one (2), and (-)-5,6-dihydro-6-tridecyl-2H-pyran-2-one (3). Seventeen other known compounds were also isolated and identified as (-)-viridiflorol (4), hexacosanoic acid (5), beta-sitosterol (6), methyl 2,4-dihydroxy-6-methylbenzoate (methylorsellinate) (7), methyl 2,4-dihydroxy-3,6-dimethylbenzoate (8), (-)-4'-hydroxy-7-methoxyflavan (9), (-)-4',7-dihydroxyflavan (10), (-)-4',7-dihydroxy-3'-methoxyflavan (11), (+)-3,4',7-trihydroxyflavan (12), (-)-catechin (13), (-)-epicatechin (14), (-)-7-hydroxy-3',4'-methylenedioxyflavan (15), 2',3,4-trihydroxy-4'-methoxydihydrochalcone (16), 3',4',7-trihydroxyflavone (17), (+)-4'-hydroxy-7-methoxyflavanone (18), hexadecanoic acid (palmitic acid) (19) and 3,4-dihydroxybenzoic acid (20). The structures of the compounds were fully characterized by various physical methods (melting point, optical rotation), spectral (UV, IR, ID and 2D NMR) and mass spectrometric techniques. In vitro assay of compounds 2 and 3 demonstrated moderate cytotoxic activities against human prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cells, while the chloroform and ethyl acetate fractions of H. superba were found to exhibit moderate AChE inhibitory activity (IC50 72 and 60 microg/mL).
    Matched MeSH terms: Plant Stems/chemistry
  17. Wibowo A, Ahmat N, Hamzah AS, Low AL, Mohamad SA, Khong HY, et al.
    Fitoterapia, 2012 Dec;83(8):1569-75.
    PMID: 22982329 DOI: 10.1016/j.fitote.2012.09.004
    A new oligostilbenoid tetramer, malaysianol B (1), was isolated from the acetone extract of the stem bark of Dryobalanops lanceolata along with seven oligostilbenoids tetramers; hopeaphenol (2), stenophyllol A (3), nepalensinol B (4), vaticanol B (5) and C (6), upunaphenol D (7), and flexuosol A (8). The structures of the isolated compounds were established on the basis of their spectroscopic data evidence. The antibacterial activity of the isolated compounds was evaluated using resazurin microtitre-plate assay.
    Matched MeSH terms: Plant Stems/chemistry
  18. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, et al.
    Molecules, 2012 Jul 16;17(7):8506-17.
    PMID: 22801364 DOI: 10.3390/molecules17078506
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.
    Matched MeSH terms: Plant Stems/chemistry*
  19. Yahayu MA, Rahmani M, Hashim NM, Amin MA, Ee GC, Sukari MA, et al.
    Molecules, 2011 May 27;16(6):4401-7.
    PMID: 21623311 DOI: 10.3390/molecules16064401
    Extraction and chromatographic separation of the extracts of dried stem barks of Glycosmis macrantha lead to isolation of two new acridone alkaloids, macranthanine and 7-hydroxynoracronycine, and a known acridone, atalaphyllidine. The structures of these alkaloids were determined by detailed spectral analysis and also by comparison with reported data.
    Matched MeSH terms: Plant Stems/chemistry
  20. Ee GC, Mah SH, Teh SS, Rahmani M, Go R, Taufiq-Yap YH
    Molecules, 2011 Nov 23;16(11):9721-7.
    PMID: 22113580 DOI: 10.3390/molecules16119721
    The extracts of the stem bark of Calophyllum soulattri gave a new pyranocoumarin, soulamarin (1), together with five other xanthones caloxanthone B (2), caloxanthone C (3), macluraxanthone (4), trapezifolixanthone (5) and brasixanthone B (6) one common triterpene, friedelin (7), and the steroidal triterpene stigmasterol (8). The structures of these compounds were established based on spectral evidence (1D and 2D NMR).
    Matched MeSH terms: Plant Stems/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links