Displaying publications 1 - 20 of 71 in total

  1. Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati-Hashjin M, Abu Osman NA
    J Biomed Mater Res A, 2015 Jul;103(7):2482-98.
    PMID: 25407786 DOI: 10.1002/jbm.a.35371
    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials.
    Matched MeSH terms: Polyesters/chemistry
  2. Bakhsheshi-Rad HR, Hamzah E, Kasiri-Asgarani M, Jabbarzare S, Iqbal N, Abdul Kadir MR
    Mater Sci Eng C Mater Biol Appl, 2016 Mar;60:526-537.
    PMID: 26706560 DOI: 10.1016/j.msec.2015.11.057
    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.
    Matched MeSH terms: Polyesters/chemistry*
  3. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WM, Rahman MZ
    Int J Mol Sci, 2012;13(2):1327-46.
    PMID: 22408394 DOI: 10.3390/ijms13021327
    A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites' thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens.
    Matched MeSH terms: Polyesters/chemistry*
  4. Ramachandran H, Iqbal NM, Sipaut CS, Abdullah AA
    Appl Biochem Biotechnol, 2011 Jul;164(6):867-77.
    PMID: 21302147 DOI: 10.1007/s12010-011-9180-8
    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer was produced using Cupriavidus sp. USMAA2-4 via one-step cultivation process through combination of various carbon sources such as 1,4-butanediol or γ-butyrolactone with either 1-pentanol, valeric acid, or 1-propanol. Oleic acid was added to increase the biomass production. The composition of 3HV and 4HB monomers were greatly affected by the concentration of 1,4-butanediol and 1-pentanol. Terpolymers with 3HV and 4HB molar fractions ranging from 2 to 41 mol.% and 5 to 31 mol.%, respectively, were produced by varying the concentration of carbon precursors. The thermal and mechanical properties of the terpolymers containing different proportions of the constituent monomers were characterized using gel permeation chromatography (GPC), DSC, and tensile machine. GPC analysis showed that the molecular weights (M (w)) of the terpolymer produced were within the range of 346 to 1,710 kDa. The monomer compositions of 3HV and 4HB were also found to have great influences on the thermal and mechanical properties of the terpolymer P(3HB-co-3HV-co-4HB) produced.
    Matched MeSH terms: Polyesters/chemistry*
  5. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R
    Adv. Drug Deliv. Rev., 2016 12 15;107:333-366.
    PMID: 27046295 DOI: 10.1016/j.addr.2016.03.010
    Global awareness of material sustainability has increased the demand for bio-based polymers like poly(lactic acid) (PLA), which are seen as a desirable alternative to fossil-based polymers because they have less environmental impact. PLA is an aliphatic polyester, primarily produced by industrial polycondensation of lactic acid and/or ring-opening polymerization of lactide. Melt processing is the main technique used for mass production of PLA products for the medical, textile, plasticulture, and packaging industries. To fulfill additional desirable product properties and extend product use, PLA has been blended with other resins or compounded with different fillers such as fibers, and micro- and nanoparticles. This paper presents a review of the current status of PLA mass production, processing techniques and current applications, and also covers the methods to tailor PLA properties, the main PLA degradation reactions, PLA products' end-of-life scenarios and the environmental footprint of this unique polymer.
    Matched MeSH terms: Polyesters/chemistry*
  6. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Carbohydr Polym, 2016 08 01;146:36-45.
    PMID: 27112848 DOI: 10.1016/j.carbpol.2016.03.051
    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging.
    Matched MeSH terms: Polyesters/chemistry*
  7. Ng SW, Shanmuga Sundara Raj S, Fun HK, Razak IA, Hook JM
    Acta Crystallogr C, 2000 Aug;56 ( Pt 8):966-8.
    PMID: 10944291
    catena-Poly[dicyclohexylammonium [tributyltin-mu-(4-oxo-4H-pyran-2,6-dicarboxylato-O(2):O( 6))]], (C(12)H(24)N)[Sn(C(7)H(2)O(6))(C(4)H(9))(3)], consists of 4-oxo-4H-pyran-2,6-dicarboxylato groups that axially link adjacent tributyltin units into a linear polyanionic chain. The ammonium counter-ions surround the chain, and each cation forms a pair of hydrogen bonds to the double-bond carbonyl O atoms of the same dianionic group. The chain propagates in a zigzag manner along the c axis of the monoclinic cell. In catena-poly[methyl(phenyl)ammonium [tributyltin-mu-(pyridine-2,6-dicarboxylato-O(2):O(6))]], (C(7)H(10)N)[Sn(C(7)H(3)NO(4))(C(4)H(9))(3)], the pyridine-2, 6-dicarboxylato groups also link the tributyltin groups into a chain, but the hydrogen-bonded chain propagates linearly on the ac face of the monoclinic cell.
    Matched MeSH terms: Polyesters/chemistry*
  8. Kian LK, Saba N, Jawaid M, Sultan MTH
    Int J Biol Macromol, 2019 Jan;121:1314-1328.
    PMID: 30208300 DOI: 10.1016/j.ijbiomac.2018.09.040
    The utilization of nanocellulose has increasingly gained attentions from various research fields, especially the field of polymer nanocomposites owing to the growing environmental hazardous of petroleum based fiber products. Meanwhile, the searching of alternative cellulose sources from different plants has become the interests for producing nanocellulose with varying characterizations that expectedly suit in specific field of applications. In this content the long and strong bast fibers from plant species was gradually getting its remarkable position in the field of nanocellulose extraction and nanocomposites fabrications. This review article intended to present an overview of the chemical structure of cellulose, different types of nanocellulose, bast fibers compositions, structure, polylactic acid (PLA) and the most probable processing techniques on the developments of nanocellulose from different bast fibers especially jute, kenaf, hemp, flax, ramie and roselle and its nanocomposites. This article however more focused on the fabrication of PLA based nanocomposites due to its high firmness, biodegradability and sustainability properties in developed products towards the environment. Along with this it also explored a couple of issues to improve the processing techniques of bast fibers nanocellulose and its reinforcement in the PLA biopolymer as final products.
    Matched MeSH terms: Polyesters/chemistry*
  9. Dasan YK, Bhat AH, Ahmad F
    Carbohydr Polym, 2017 Feb 10;157:1323-1332.
    PMID: 27987839 DOI: 10.1016/j.carbpol.2016.11.012
    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend.
    Matched MeSH terms: Polyesters/chemistry*
  10. Liau CP, Bin Ahmad M, Shameli K, Yunus WM, Ibrahim NA, Zainuddin N, et al.
    ScientificWorldJournal, 2014;2014:572726.
    PMID: 24600329 DOI: 10.1155/2014/572726
    Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks.
    Matched MeSH terms: Polyesters/chemistry*
  11. Chee JW, Amirul AA, Majid MI, Mansor SM
    Int J Pharm, 2008 Sep 1;361(1-2):1-6.
    PMID: 18584978 DOI: 10.1016/j.ijpharm.2008.05.007
    Copolyesters of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) were produced by Cupriavidus sp. (USMAA2-4) (DSM 19379) from carbon sources of 1,4-butanediol and gamma-butyrolactone. The composition of copolyesters produced varied from 0 to 45 mol% 4HB, depending on the combination of carbon sources supplied. The P(3HB-co-4HB) films containing Mitragyna speciosa crude extract were prepared with the ratio varying from 10 to 40% (w/w). The in vitro crude extract release of the films was studied in 0.1M phosphate buffer (pH 7.4) at 37 degrees C. Although the release rate was slow, it was maintained at a constant rate. This suggests that the crude extract release was due to the polymer degradation because the amount of crude extract released was consistent. The amount of degradation was based on the films' dry weight loss, decrease in molecular weight and surface morphology changes. The degradation rate increased with the 4HB content. This showed that the polymer degradation is dependant on the molecular weight, crystallinity, thermal properties and water permeability. The different drug loading ratio which led to surface morphology changes also gave an effect on polymer degradation.
    Matched MeSH terms: Polyesters/chemistry*
  12. Ahmad AF, Abbas Z, Obaiys SJ, Ibrahim N, Hashim M, Khaleel H
    PLoS One, 2015;10(10):e0140505.
    PMID: 26474301 DOI: 10.1371/journal.pone.0140505
    Bio-composites of oil palm empty fruit bunch (OPEFB) fibres and polycaprolactones (PCL) with a thickness of 1 mm were prepared and characterized. The composites produced from these materials are low in density, inexpensive, environmentally friendly, and possess good dielectric characteristics. The magnitudes of the reflection and transmission coefficients of OPEFB fibre-reinforced PCL composites with different percentages of filler were measured using a rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in the X-band frequency range. In contrast to the effective medium theory, which states that polymer-based composites with a high dielectric constant can be obtained by doping a filler with a high dielectric constant into a host material with a low dielectric constant, this paper demonstrates that the use of a low filler percentage (12.2%OPEFB) and a high matrix percentage (87.8%PCL) provides excellent results for the dielectric constant and loss factor, whereas 63.8% filler material with 36.2% host material results in lower values for both the dielectric constant and loss factor. The open-ended probe technique (OEC), connected with the Agilent vector network analyzer (VNA), is used to determine the dielectric properties of the materials under investigation. The comparative approach indicates that the mean relative error of FEM is smaller than that of NRW in terms of the corresponding S21 magnitude. The present calculation of the matrix/filler percentages endorses the exact amounts of substrate utilized in various physics applications.
    Matched MeSH terms: Polyesters/chemistry*
  13. Abdullah BM, Zubairi SI, Huri HZ, Hairunisa N, Yousif E, Basu RC
    PLoS One, 2016;11(3):e0151603.
    PMID: 27008312 DOI: 10.1371/journal.pone.0151603
    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.
    Matched MeSH terms: Polyesters/chemistry*
  14. Huong KH, Kannusamy S, Lim SY, Amirul AA
    J. Ind. Microbiol. Biotechnol., 2015 Sep;42(9):1291-7.
    PMID: 26233315 DOI: 10.1007/s10295-015-1657-y
    Two-stage fermentation was normally employed to achieve a high poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] productivity with higher 4HB molar fraction. Here, we demonstrated single-stage fermentation method which is more industrial feasible by implementing mixed-substrate cultivation strategy. Studies on bioreactor scale show a remarkably high PHA accumulation of 73 wt%, contributing to a high PHA concentration and product yield of 8.6 g/L and 2.7 g/g, respectively. This fermentation strategy has resulted in copolymers with wider range of 4HB monomer composition, which ranges from 12 to 55 mol%. These copolymers show a broad range of weight average molecular weight (M w ) from 119.5 to 407.0 kDa. The copolymer characteristics were found to be predominantly affected by the nature of the substrates and the mixture strategies, regardless of the 4HB monomer compositions. This was supported by the determination of copolymer randomness using (13)C-NMR analysis. The study warrants significantly in the copolymer scale-up and modeling at industrial level.
    Matched MeSH terms: Polyesters/chemistry
  15. Huong KH, Azuraini MJ, Aziz NA, Amirul AA
    J Biosci Bioeng, 2017 Jul;124(1):76-83.
    PMID: 28457658 DOI: 10.1016/j.jbiosc.2017.02.003
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] copolymer receives attention as next generation biomaterial in medical application. However, the exploitation of the copolymer is still constrained since such copolymer has not yet successfully been performed in industrial scale production. In this work, we intended to establish pilot production system of the copolymer retaining the copolymer quality which has recently discovered to have novel characteristic from lab scale fermentation. An increase of agitation speed has significantly improved the copolymer accumulation efficiency by minimizing the utilization of substrates towards cell growth components. This is evidenced by a drastic increase of PHA content from 28 wt% to 63 wt% and PHA concentration from 3.1 g/L to 6.5 g/L but accompanied by the reduction of residual biomass from 8.0 g/L to 3.8 g/L. Besides, fermentations at lower agitation and aeration have resulted in reduced molecular weight and mechanical strength of the copolymer, suggesting the role of sufficient oxygen supply efficiency in improving the properties of the resulting copolymers. The KLa-based scale-up fermentation was performed successfully in maintaining the yield and the quality of the copolymers produced without a drastic fluctuation. This suggests that the scale-up based on the KLa values supported the fermentation system of P(3HB-co-4HB) copolymer production in single-stage using mixed-substrate cultivation strategy.
    Matched MeSH terms: Polyesters/chemistry*
  16. Huong KH, Elina KAR, Amirul AA
    Int J Biol Macromol, 2018 Sep;116:217-223.
    PMID: 29723627 DOI: 10.1016/j.ijbiomac.2018.04.148
    Long carbon chain alkanediols are used in the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], however these substrates possess high toxicity towards bacterial cells. This study demonstrated the effective utilisation of a long carbon chain alkanediol, namely 1,8-octanediol, to enhance the yield and production of a copolymer with a high molecular weight of over 1000 kDa, which is desirable for novel applications in medical and biopharmaceuticals. The increased PHA content (47-61 wt%) and concentration (1.7-4.5 g/L) was achieved by additional feeding of a combination of C4 substrates at C/N 10, with 1,8-octanediol + γ-butyrolactone producing P(3HB-co-22 mol% 4HB) with a high molecular weight (1060 kDa) and elongation at break of 970%. The DO-stat feeding strategy of C/N 10 has shown an increment of PHA concentration for both carbon combination, 0.45-4.27 g/L and 0.32-3.36 g/L for 1,8-octanediol + sodium 4-hydroxybutyrate (4HB-Na) and 1,8-octanediol + γ-butyrolactone, but with a slight reduction on molecular weight and mechanical strength. Nonetheless, further study revealed that a nitrogen-absence feeding strategy could retain the high molecular weight and elongation at break of the copolymer, and simultaneously improving the overall P(3HB-co-4HB) production.
    Matched MeSH terms: Polyesters/chemistry*
  17. Revati R, Majid MSA, Ridzuan MJM, Basaruddin KS, Rahman Y MN, Cheng EM, et al.
    J Mech Behav Biomed Mater, 2017 10;74:383-391.
    PMID: 28688321 DOI: 10.1016/j.jmbbm.2017.06.035
    The in vitro degradation and mechanical properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA)-based scaffold were investigated. In this study, composite scaffolds with PP to PLA ratios of 0%, 10%, 20%, and 30% were immersed in a PBS solution at 37°C for 40 days. Compression tests were conducted to evaluate the compressive strength and modulus of the scaffolds, according to ASTM F451-95. The compression strength of the scaffolds was found to increase from 1.94 to 9.32MPa, while the compressive modulus increased from 1.73 to 5.25MPa as the fillers' content increased from 0wt% to 30wt%. Moreover, field emission scanning electron microscopy (FESEM) and X-ray diffraction were employed to observe and analyse the microstructure and fibre-matrix interface. Interestingly, the degradation rate was reduced for the PLA/PP20scaffold, though insignificantly, this could be attributed to the improved mechanical properties and stronger fibre-matrix interface. Microstructure changes after degradation were observed using FESEM. The FESEM results indicated that a strong fibre-matrix interface was formed in the PLA/PP20scaffold, which reflected the addition of P. purpureum into PLA decreasing the degradation rate compared to in pure PLA scaffolds. The results suggest that the P. purpureum/PLA scaffold degradation rate can be altered and controlled to meet requirements imposed by a given tissue engineering application.
    Matched MeSH terms: Polyesters/chemistry*
  18. Almoustafa HA, Alshawsh MA, Chik Z
    Int J Pharm, 2017 Nov 25;533(1):275-284.
    PMID: 28943210 DOI: 10.1016/j.ijpharm.2017.09.054
    Nanoprecipitation is a simple and increasingly trending method for nanoparticles preparation. The self-assembly feature of poly (ethylene glycol)-poly (lactide-co-glycolic acid) (PEG-PLGA) amphiphilic copolymer into a nanoparticle and its versatile structure makes nanoprecipitation one of the best methods for its preparation. The aim of this study is to review currently available literature for standard preparation of PEG-PLGA nanoparticles using nanoprecipitation technique in order to draw conclusive evidenceto draw conclusive evidence that can guide researchers during formulation development. To achieve this, three databases (Web of Science, Scopus and PubMed) were searched using relevant keywords and the extracted articles were reviewed based on defined inclusion and exclusion criteria. Data extraction and narrative analysis of the obtained literature was performed when appropriate, along with our laboratory observations to support those claims wherever necessary. As a result of this analysis, reports that matched our criteria conformed to the general facts about nanoprecipitation techniques such as simplicity in procedure, low surfactants requirement, narrow size distribution, and low resulting concentrations. However, these reports showed interesting advantages for using PEG-PLGA as they are frequently reported to be freeze-dried and active pharmaceutical ingredients (APIs) with low hydrophobicity were reported to successfully be encapsulated in the particles.
    Matched MeSH terms: Polyesters/chemistry*
  19. Nizamuddin S, Jadhav A, Qureshi SS, Baloch HA, Siddiqui MTH, Mubarak NM, et al.
    Sci Rep, 2019 04 01;9(1):5445.
    PMID: 30931991 DOI: 10.1038/s41598-019-41960-1
    Polymer composites are fabricated by incorporating fillers into a polymer matrix. The intent for addition of fillers is to improve the physical, mechanical, chemical and rheological properties of the composite. This study reports on a unique polymer composite using hydrochar, synthesised by microwave-assisted hydrothermal carbonization of rice husk, as filler in polylactide matrix. The polylactide/hydrochar composites were fabricated by incorporating hydrochar in polylactide at 5%, 10%, 15% and 20 wt% by melt processing in a Haake rheomix at 170 °C. Both the neat polylactide and polylactide/hydrochar composite were characterized for mechanical, structural, thermal and rheological properties. The tensile modulus of polylactide/hydrochar composites was improved from 2.63 GPa (neat polylactide) to 3.16 GPa, 3.33 GPa, 3.54 GPa, and 4.24 GPa after blending with hydrochar at 5%, 10%, 15%, and 20%, respectively. Further, the incorporation of hydrochar had little effect on storage modulus (G') and loss modulus (G″). The findings of this study reported that addition of hydrochar improves some characteristics of polylactide composites suggesting the potential of hydrochar as filler for polymer/hydrochar composites.
    Matched MeSH terms: Polyesters/chemistry*
  20. Huu Phong T, Van Thuoc D, Sudesh K
    Int J Biol Macromol, 2016 Mar;84:361-6.
    PMID: 26708435 DOI: 10.1016/j.ijbiomac.2015.12.037
    A halophilic bacterium isolated from mangrove soil sample in Northern Vietnam, Yangia sp. ND199 was found capable of producing homopolymer poly(3-hydroxybutyrate) [P(3HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], and copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from different carbon sources. The presence of 3HB, 3HV, and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance analysis. Only P(3HB) was produced using carbon sources such as fructose or by a combination of fructose with 1,5-pentanediol, 1,6-hexanediol, sodium hexanoate, or sodium octanoate. The biosynthesis of P(3HB-co-3HV) was achieved by adding cosubstrates such as sodium valerate and sodium heptanoate. When 1,4-butanediol, γ-butyrolactone or sodium 4-hydroxybutyrate was added to the culture medium, P(3HB-co-4HB) containing 4.0-7.1mol% 4HB fraction was accumulated. The molecular weights and thermal properties of polyesters were determined by gel permeation chromatography and differential scanning calorimeter, respectively. The results showed that Yangia sp. ND199 is able to produce polyester with high weight average molecular weight ranging from 1.3×10(6) to 2.2×10(6) Dalton and number average molecular weight ranging from 4.2×10(5) to 6.9×10(5) Dalton. The molecular weights, glass transition temperature as well as melting temperature of homopolymer P(3HB) are higher than those of copolymer P(3HB-co-3HV) or P(3HB-co-4HB).
    Matched MeSH terms: Polyesters/chemistry
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links