Displaying all 8 publications

Abstract:
Sort:
  1. Khairul Anuar A, Khamis S
    Med J Malaysia, 1978 Dec;33(2):186-92.
    PMID: 755174
    Matched MeSH terms: Poultry Diseases/parasitology*
  2. Farah Haziqah MT, Khadijah S
    Trop Biomed, 2020 Dec 01;37(4):896-902.
    PMID: 33612743 DOI: 10.47665/tb.37.4.896
    Indigenous chicken (Gallus domesticus) is reared for both its meat and eggs. Most consumers prefer the meat probably due to its specific texture and taste. The study was conducted to determine the presence of helminth parasites of 240 indigenous chickens (Gallus domesticus) obtained randomly from 12 divisions in Penang Island, Malaysia. Necropsy findings revealed 14 endoparasite species which parasitized these chickens namely, Acuaria hamulosa, Acuaria spiralis, Amoebotaenia sphenoides, Ascaridia galli, Brachylaima sp., Capillaria spp., Gongylonema ingluvicola, Heterakis gallinarum, Hymenolepis sp., Oxyspirura mansoni, Raillietina echinobothrida, Raillietina tetragona, Syngamus trachea and Tetrameres americana. The high abundance of helminth species observed in this study may be attributed to the free-range scavenging production system, where these indigenous chickens were exposed to intermediate or paratenic hosts of helminths which infect poultry. Besides, sustainable methods of helminthic control measure are necessary in order to enhance indigenous chicken production and eventually improve the economy of the rural farmers.
    Matched MeSH terms: Poultry Diseases/parasitology*
  3. Takano A, Morinaga D, Teramoto I, Hatabu T, Kido Y, Kaneko A, et al.
    Acta Parasitol, 2025 Jan 09;70(1):17.
    PMID: 39789311 DOI: 10.1007/s11686-024-00960-6
    PURPOSE: Flotation methods are widely used to detect oocysts/cysts of protozoans and eggs of helminths, except trematodes. However, details regarding the concentration and recovery rates of these parasites are poorly understood.

    METHODS: Using Eimeria tenella oocysts as a model parasite, the present study evaluated three check points: (1) the proportion of parasites that remain floating in flotation solution (sucrose or saturated saline) during centrifugation, (2) the proportion of oocysts that naturally float after addition of flotation solution after centrifugation, and (3) the rate of recovery on cover slips after completion of the flotation protocol.

    RESULTS: After centrifugation in sucrose solution and saturated saline solution, 82.4% and 60.3% of oocysts floated, respectively. After addition of flotation solution after the final centrifugation step, the recovery rates for oocysts that naturally floated again for 30 min in sucrose and saturated saline were 39.2% and 38.2%, respectively. The recovery rate on cover slips as the final step after performing a commonly used flotation method was 36.4% in sucrose solution (the rate for saturated saline solution could not be assessed due to rapid crystallization).

    CONCLUSION: Our results suggest that floating oocysts could have become dispersed by the addition of flotation solution, and not all of these oocysts remained floating after an additional 30 min of settling time although collection on cover slips could be effective for accurate recovery.

    Matched MeSH terms: Poultry Diseases/parasitology
  4. Chiang GL, Cheong WH, Eng KL, Samarawickrema WA
    J Helminthol, 1987 Dec;61(4):349-53.
    PMID: 3437114
    This paper reports the experimental transmission of a bird parasite into jirds. Infective larvae of Cardiofilaria nilesi obtained from laboratory colonized Coquillettidia crassipes mosquitoes which had fed on an infected chicken were inoculated subcutaneously into jirds. The number of larvae per jird varied from 10 to 228. Microfilaraemia appeared 22 to 89 days after inoculation of the infective larvae. Experiments were carried out with 24 jirds through six generations extending over a period of 22 months and 17 produced patent infections. At present 8 infected jirds are being maintained in the laboratory; their patent periods ranging from 6 to 13 months. However, the longest patent period observed was about thirteen months. The percentage of adults recovered in autopsied jirds ranged from 0 to 40 with an average of 16. The chicken showed a microfilarial periodicity with the peak microfilarial density around 2200 hours. However, in jirds there was a change in sub-periodicity. This model in the jird may be very useful for the screening of filaricides and in immunological work.
    Matched MeSH terms: Poultry Diseases/parasitology
  5. Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, et al.
    Genome Res, 2014 Oct;24(10):1676-85.
    PMID: 25015382 DOI: 10.1101/gr.168955.113
    Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding.
    Matched MeSH terms: Poultry Diseases/parasitology
  6. Rauff-Adedotun AA, Mohd Zain SN, Farah Haziqah MT
    Parasitol Res, 2020 Nov;119(11):3559-3570.
    PMID: 32951145 DOI: 10.1007/s00436-020-06828-8
    Blastocystis is the most frequently observed eukaryotic gastrointestinal symbiont in humans and animals. Its low host specificity and zoonotic potential suggest that animals might serve as possible reservoirs for transmission. The prevalence and subtype distributions of Blastocystis sp. in animal populations in Southeast Asia, a hotspot for zoonotic diseases, are reviewed. Recommendations for future research aimed at understanding the zoonotic role of Blastocystis are also included. Seven countries have, so far, reported Blastocystis infection in various animals, such as livestock, poultry, companion animals, and non-human primates. Pigs were the most studied animals, and there were records of 100% prevalence in pigs, cattle, and ostriches. Using polymerase chain reaction (PCR)-based approaches, twelve Blastocystis sp. subtypes (STs), namely ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8, ST9, ST10, ST12, and ST14 have been recognised infecting animals of Southeast Asia. ST1 and ST5 were the most frequently identified, and Malaysia observed the most diverse distribution of subtypes. Further investigations on Blastocystis sp. in various animal hosts, using adequate sample sizes and uniform detection methods, are essential for a better understanding of the distribution of this organism. Detailed genome studies, especially on STs shared by humans and animals, are also recommended.
    Matched MeSH terms: Poultry Diseases/parasitology
  7. Takano A, Morinaga D, Teramoto I, Hatabu T, Kido Y, Kaneko A, et al.
    Vet Med Sci, 2024 Sep;10(5):e70007.
    PMID: 39207196 DOI: 10.1002/vms3.70007
    Infections by gastrointestinal parasites are found in a variety of animals worldwide. For the diagnosis of such infections, the flotation method is commonly used to detect parasitic microorganisms, such as oocysts or eggs, in feces. Instead of adding a flotation solution after the final centrifugation step and using a cover slip to collect the parasites, the method using a wire loop for the recovery of the organisms has been reported as one of alternative methods. However, the recovery rates of microorganisms from the flotation method have not been analysed. In the present study, the utility of a flotation method with the use of a wire loop of 8 mm in diameter (the loop method) was evaluated using different numbers of E. tenella oocysts and Heterakis gallinarum eggs, and chicken fecal samples collected at the farms. Consequently, we found that the oocysts and eggs in tubes could be collected at a ratio of 2.00 to 3.08. Thus, our results indicate that the loop method is a simple and time saving method, implicating the application for the estimated OPG/ EPG (Oocysts/Eggs per gram) of the samples.
    Matched MeSH terms: Poultry Diseases/parasitology
  8. Puvanesuaran VR, Noordin R, Balakrishnan V
    Avian Dis, 2013 Mar;57(1):128-32.
    PMID: 23678741
    Toxoplasma gondii is a parasitic protozoan that infects nearly one-third of humans. The present study was performed to isolate and genotype T. gondii from free-range ducks in Malaysia. Sera, heads, and hearts from 205 ducks were obtained from four states in Peninsular Malaysia, and 30 (14.63%) sera were found to be seropositive when assayed with the modified agglutination test (MAT > or = 1:6). All the positive samples were inoculated into mice, and T. gondii was successfully isolated from four individual duck samples (1.95%), which were initially found to be strongly seropositive (MAT > or = 1:24). The isolates were subjected to PCR-RFLP analysis, and two T. gondii strains were identified: type I and type II. This is the first reported study on the genetic characterization of T. gondii isolates from free-range farm animals in Southeast Asia.
    Matched MeSH terms: Poultry Diseases/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links