Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Huynh-Le MP, Fan CC, Karunamuni R, Thompson WK, Martinez ME, Eeles RA, et al.
    Nat Commun, 2021 02 23;12(1):1236.
    PMID: 33623038 DOI: 10.1038/s41467-021-21287-0
    Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score ≥ 7, stage T3-T4, PSA ≥ 10 ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n = 71,856), Asian (n = 2,382), and African (n = 6,253) genetic ancestries (p 
    Matched MeSH terms: Prostatic Neoplasms/genetics*
  2. Szulkin R, Karlsson R, Whitington T, Aly M, Gronberg H, Eeles RA, et al.
    Cancer Epidemiol Biomarkers Prev, 2015 Nov;24(11):1796-800.
    PMID: 26307654 DOI: 10.1158/1055-9965.EPI-15-0543
    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical.

    METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR).

    RESULTS: We observed no significant association between genetic variants and prostate cancer survival.

    CONCLUSIONS: Common genetic variants with large impact on prostate cancer survival were not observed in this study.

    IMPACT: Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes.

    Matched MeSH terms: Prostatic Neoplasms/genetics
  3. Panagiotou OA, Travis RC, Campa D, Berndt SI, Lindstrom S, Kraft P, et al.
    Eur Urol, 2015 Apr;67(4):649-57.
    PMID: 25277271 DOI: 10.1016/j.eururo.2014.09.020
    BACKGROUND: No single-nucleotide polymorphisms (SNPs) specific for aggressive prostate cancer have been identified in genome-wide association studies (GWAS).

    OBJECTIVE: To test if SNPs associated with other traits may also affect the risk of aggressive prostate cancer.

    DESIGN, SETTING, AND PARTICIPANTS: SNPs implicated in any phenotype other than prostate cancer (p≤10(-7)) were identified through the catalog of published GWAS and tested in 2891 aggressive prostate cancer cases and 4592 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). The 40 most significant SNPs were followed up in 4872 aggressive prostate cancer cases and 24,534 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) and 95% confidence intervals (CIs) for aggressive prostate cancer were estimated.

    RESULTS AND LIMITATIONS: A total of 4666 SNPs were evaluated by the BPC3. Two signals were seen in regions already reported for prostate cancer risk. rs7014346 at 8q24.21 was marginally associated with aggressive prostate cancer in the BPC3 trial (p=1.6×10(-6)), whereas after meta-analysis by PRACTICAL the summary OR was 1.21 (95% CI 1.16-1.27; p=3.22×10(-18)). rs9900242 at 17q24.3 was also marginally associated with aggressive disease in the meta-analysis (OR 0.90, 95% CI 0.86-0.94; p=2.5×10(-6)). Neither of these SNPs remained statistically significant when conditioning on correlated known prostate cancer SNPs. The meta-analysis by BPC3 and PRACTICAL identified a third promising signal, marked by rs16844874 at 2q34, independent of known prostate cancer loci (OR 1.12, 95% CI 1.06-1.19; p=4.67×10(-5)); it has been shown that SNPs correlated with this signal affect glycine concentrations. The main limitation is the heterogeneity in the definition of aggressive prostate cancer between BPC3 and PRACTICAL.

    CONCLUSIONS: We did not identify new SNPs for aggressive prostate cancer. However, rs16844874 may provide preliminary genetic evidence on the role of the glycine pathway in prostate cancer etiology.

    PATIENT SUMMARY: We evaluated whether genetic variants associated with several traits are linked to the risk of aggressive prostate cancer. No new such variants were identified.

    Matched MeSH terms: Prostatic Neoplasms/genetics*
  4. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2018 07;50(7):928-936.
    PMID: 29892016 DOI: 10.1038/s41588-018-0142-8
    Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10-9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55-2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04-6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1.
    Matched MeSH terms: Prostatic Neoplasms/genetics*
  5. Tan JSJ, Ong KC, Ong DBL, Wu YS, Razack A, Kuppusamy S, et al.
    Malays J Pathol, 2019 Dec;41(3):243-251.
    PMID: 31901908
    INTRODUCTION: Polymorphic expression of a CAG repeat sequence in the androgen receptor (AR) gene may influence the activity of the AR and the occurrence of prostate cancer and the TMPRSS2-ERG fusion event. Furthermore, this polymorphism may be responsible for the ethnic variation observed in prostate cancer occurrence and expression of the ERG oncogene. We investigate the expression of AR and ERG in the biopsies of Malaysian men with prostate cancer and in the same patients relate this to the length of the CAG repeat sequence in their AR gene.

    MATERIALS AND METHODS: From a PSA screening initiative, 161 men were shown to have elevated PSA levels in their blood and underwent prostatic tissue biopsy. DNA was extracted from the blood, and exon 1 of the AR gene amplified by PCR and sequenced. The number of CAG repeat sequences were counted and compared to the immunohistochemical expression of ERG and AR in the matched tumour biopsies.

    RESULTS: Of men with elevated PSA, 89 were diagnosed with prostate cancer, and 72 with benign prostatic hyperplasia (BPH). There was no significant difference in the length of the CAG repeat in men with prostate cancer and BPH. The CAG repeat length was not associated with; age, PSA or tumour grade, though a longer CAG repeat was associated with tumour stage. ERG and AR were expressed in 36% and 86% of the cancers, respectively. There was no significant association between CAG repeat length and ERG or AR expression. However, there was a significant inverse relationship between ERG and AR expression. In addition, a significantly great proportion of Indian men had ERG positive tumours, compared to men of Malay or Chinese descent.

    CONCLUSIONS: CAG repeat length is not associated with prostate cancer or expression of ERG or AR. However, ERG appears to be more common in the prostate cancers of Malaysian Indian men than in the prostate cancers of other Malaysian ethnicities and its expression in this study was inversely related to AR expression.

    Matched MeSH terms: Prostatic Neoplasms/genetics*
  6. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al.
    Nat Genet, 2021 Jan;53(1):65-75.
    PMID: 33398198 DOI: 10.1038/s41588-020-00748-0
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
    Matched MeSH terms: Prostatic Neoplasms/genetics*
  7. Markt SC, Shui IM, Unger RH, Urun Y, Berg CD, Black A, et al.
    Prostate, 2015 Nov;75(15):1677-81.
    PMID: 26268879 DOI: 10.1002/pros.23035
    BACKGROUND: ABO blood group has been associated with risk of cancers of the pancreas, stomach, ovary, kidney, and skin, but has not been evaluated in relation to risk of aggressive prostate cancer.

    METHODS: We used three single nucleotide polymorphisms (SNPs) (rs8176746, rs505922, and rs8176704) to determine ABO genotype in 2,774 aggressive prostate cancer cases and 4,443 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). Unconditional logistic regression was used to calculate age and study-adjusted odds ratios and 95% confidence intervals for the association between blood type, genotype, and risk of aggressive prostate cancer (Gleason score ≥8 or locally advanced/metastatic disease (stage T3/T4/N1/M1).

    RESULTS: We found no association between ABO blood type and risk of aggressive prostate cancer (Type A: OR = 0.97, 95%CI = 0.87-1.08; Type B: OR = 0.92, 95%CI =n0.77-1.09; Type AB: OR = 1.25, 95%CI = 0.98-1.59, compared to Type O, respectively). Similarly, there was no association between "dose" of A or B alleles and aggressive prostate cancer risk.

    CONCLUSIONS: ABO blood type was not associated with risk of aggressive prostate cancer.

    Matched MeSH terms: Prostatic Neoplasms/genetics*
  8. Munretnam K, Alex L, Ramzi NH, Chahil JK, Kavitha IS, Hashim NA, et al.
    Mol Biol Rep, 2014;41(4):2501-8.
    PMID: 24443231 DOI: 10.1007/s11033-014-3107-8
    There is growing global interest to stratify men into different levels of risk to developing prostate cancer, thus it is important to identify common genetic variants that confer the risk. Although many studies have identified more than a dozen common genetic variants which are highly associated with prostate cancer, none have been done in Malaysian population. To determine the association of such variants in Malaysian men with prostate cancer, we evaluated a panel of 768 SNPs found previously associated with various cancers which also included the prostate specific SNPs in a population based case control study (51 case subjects with prostate cancer and 51 control subjects) in Malaysian men of Malay, Chinese and Indian ethnicity. We identified 21 SNPs significantly associated with prostate cancer. Among these, 12 SNPs were strongly associated with increased risk of prostate cancer while remaining nine SNPs were associated with reduced risk. However, data analysis based on ethnic stratification led to only five SNPs in Malays and 3 SNPs in Chinese which remained significant. This could be due to small sample size in each ethnic group. Significant non-genetic risk factors were also identified for their association with prostate cancer. Our study is the first to investigate the involvement of multiple variants towards susceptibility for PC in Malaysian men using genotyping approach. Identified SNPs and non-genetic risk factors have a significant association with prostate cancer.
    Matched MeSH terms: Prostatic Neoplasms/genetics*
  9. Nargesi MM, Ismail P, Razack AH, Pasalar P, Nazemi A, Oshkoor SA, et al.
    Asian Pac J Cancer Prev, 2011;12(5):1265-8.
    PMID: 21875279
    PURPOSE: Prostate cancer differs markedly in incidence across ethnic groups. Since this disease is influenced by complex genetics, it is many genetic factors may affect the level of susceptibility to development of the disease. In this study, four Y-linked short tandem repeats (STRs), DYS388, DYS435, DYS437, and DYS439, were genotyped to compare Malaysian prostate cancer patients and normal control males.

    MATERIALS AND METHODS: A total of 175 subjects comprising 84 patients and 91 healthy individuals were recruited. Multiplex PCR was optimized to co-amplify DYS388, DYS435, DYS437, and DYS439 loci. All samples were genotyped for alleles of four DYS loci using a Genetic Analysis System.

    RESULTS: Of all DYS loci, allele 10 (A) of DYS388 had a significantly lower incidence of disease in compare with other alleles of this locus, while a higher incidence of disease was found among males who had either allele 12 (C) of DYS388 or allele 14 (E) of DYS439. Moreover, a total of 47 different haplotypes comprising different alleles of four DYS loci were found among the whole study samples, of which haplotypes AABC and CAAA showed a lower and higher frequency among cases than controls, respectively.

    CONCLUSIONS: It is likely that Malaysian males who belong to Y-lineages with either allele 12 of DYS388, allele 14 of DYS439, or haplotype CAAA are more susceptible to develop prostate cancer, while those belonging to lineages with allele 10 of DYS388 or haplotype AABC are more resistant to the disease.

    Matched MeSH terms: Prostatic Neoplasms/genetics*
  10. Dadaev T, Saunders EJ, Newcombe PJ, Anokian E, Leongamornlert DA, Brook MN, et al.
    Nat Commun, 2018 06 11;9(1):2256.
    PMID: 29892050 DOI: 10.1038/s41467-018-04109-8
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
    Matched MeSH terms: Prostatic Neoplasms/genetics*
  11. Poniah P, Mohd Zain S, Abdul Razack AH, Kuppusamy S, Karuppayah S, Sian Eng H, et al.
    Urol Oncol, 2017 09;35(9):545.e1-545.e11.
    PMID: 28527622 DOI: 10.1016/j.urolonc.2017.04.017
    BACKGROUND: Two key issues in prostate cancer (PCa) that demand attention currently are the need for a more precise and minimally invasive screening test owing to the inaccuracy of prostate-specific antigen and differential diagnosis to distinguish advanced vs. indolent cancers. This continues to pose a tremendous challenge in diagnosis and prognosis of PCa and could potentially lead to overdiagnosis and overtreatment complications. Copy number variations (CNVs) in the human genome have been linked to various carcinomas including PCa. Detection of these variants may improve clinical treatment as well as an understanding of the pathobiology underlying this complex disease.

    METHODS: To this end, we undertook a pilot genome-wide CNV analysis approach in 36 subjects (18 patients with high-grade PCa and 18 controls that were matched by age and ethnicity) in search of more accurate biomarkers that could potentially explain susceptibility toward high-grade PCa. We conducted this study using the array comparative genomic hybridization technique. Array results were validated in 92 independent samples (46 high-grade PCa, 23 benign prostatic hyperplasia, and 23 healthy controls) using polymerase chain reaction-based copy number counting method.

    RESULTS: A total of 314 CNV regions were found to be unique to PCa subjects in this cohort (P<0.05). A log2 ratio-based copy number analysis revealed 5 putative rare or novel CNV loci or both associated with susceptibility to PCa. The CNV gain regions were 1q21.3, 15q15, 7p12.1, and a novel CNV in PCa 12q23.1, harboring ARNT, THBS1, SLC5A8, and DDC genes that are crucial in the p53 and cancer pathways. A CNV loss and deletion event was observed at 8p11.21, which contains the SFRP1 gene from the Wnt signaling pathway. Cross-comparison analysis with genes associated to PCa revealed significant CNVs involved in biological processes that elicit cancer pathogenesis via cytokine production and endothelial cell proliferation.

    CONCLUSION: In conclusion, we postulated that the CNVs identified in this study could provide an insight into the development of advanced PCa.

    Matched MeSH terms: Prostatic Neoplasms/genetics*
  12. Nurdin A, Hoshi Y, Yoneyama T, Miyauchi E, Tachikawa M, Watanabe M, et al.
    J Pharm Sci, 2016 Nov;105(11):3440-3452.
    PMID: 27665127 DOI: 10.1016/j.xphs.2016.08.013
    Prostate-specific antigen is currently the only protein biomarker routinely used as a diagnostic tool for early detection and treatment monitoring of prostate cancer. However, it remains questionable whether prostate-specific antigen-based screening can sensitively and selectively identify the presence and progression status of primary and metastatic prostate cancers. Hence, the purpose of this study was to identify potential biomarker candidates in the secretome of primary and metastatic prostate cancer cells by using a combination of global and targeted proteomics. Quantitative comparisons among secretome proteins derived from androgen-responsive primary cancer cells (P-22Rv1), androgen-irresponsive bone metastatic cancer cells (M-PC-3), and noncancerous prostate cells (N-PNT2) were performed using 2-dimensional image-converted analysis of liquid chromatography and mass spectrometry followed by in silico selection selected reaction monitoring analysis. Mediator of RNA polymerase II transcription subunit 13-like, insulin-like growth factor-binding protein 2, and hepatocyte growth factor were identified as highly secreted proteins from P-22Rv1 cells compared with N-PNT2 cells. Prostate-associated microseminoprotein, proactivator polypeptide, collagen-α-1 (VI) chain, and neuropilin-1 were identified as predominantly secreted proteins in M-PC-3 cells compared with N-PNT2 cells. These proteins in biological fluids are considered to be candidate biomarkers of primary and/or metastatic prostate cancer.
    Matched MeSH terms: Prostatic Neoplasms/genetics*
  13. Ma B, Khazali A, Shao H, Jiang Y, Wells A
    Cell Commun Signal, 2019 12 12;17(1):164.
    PMID: 31831069 DOI: 10.1186/s12964-019-0489-1
    BACKGROUND: Carcinoma cells shift between epithelial and mesenchymal phenotypes during cancer progression, as defined by surface presentation of the cell-cell cohesion molecule E-cadherin, affecting dissemination, progression and therapy responsiveness. Concomitant with the loss of E-cadherin during the mesenchymal transition, the predominant receptor isoform for ELR-negative CXC ligands shifts from CXCR3-B to CXCR3-A which turns this classical G-protein coupled receptor from an inhibitor to an activator of cell migration, thus promoting tumor cell invasiveness. We proposed that CXCR3 was not just a coordinately changed receptor but actually a regulator of the cell phenotype.

    METHODS: Immunoblotting, immunofluorescence, quantitative real-time PCR and flow cytometry assays investigated the expression of E-cadherin and CXCR3 isoforms. Intrasplenic inoculation of human prostate cancer (PCa) cells with spontaneous metastasis to the liver analyzed E-cadherin and CXCR3-B expression during cancer progression in vivo.

    RESULTS: We found reciprocal regulation of E-cadherin and CXCR3 isoforms. E-cadherin surface expression promoted CXCR3-B presentation on the cell membrane, and to a lesser extent increased its mRNA and total protein levels. In turn, forced expression of CXCR3-A reduced E-cadherin expression level, whereas CXCR3-B increased E-cadherin in PCa. Meanwhile, a positive correlation of E-cadherin and CXCR3-B expression was found both in experimental PCa liver micro-metastases and patients' tissue.

    CONCLUSIONS: CXCR3-B and E-cadherin positively correlated in vitro and in vivo in PCa cells and liver metastases, whereas CXCR3-A negatively regulated E-cadherin expression. These results suggest that CXCR3 isoforms may play important roles in cancer progression and dissemination via diametrically regulating tumor's phenotype.

    Matched MeSH terms: Prostatic Neoplasms/genetics*
  14. Matejcic M, Saunders EJ, Dadaev T, Brook MN, Wang K, Sheng X, et al.
    Nat Commun, 2018 Nov 05;9(1):4616.
    PMID: 30397198 DOI: 10.1038/s41467-018-06863-1
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p 
    Matched MeSH terms: Prostatic Neoplasms/genetics*
  15. Page EC, Bancroft EK, Brook MN, Assel M, Hassan Al Battat M, Thomas S, et al.
    Eur Urol, 2019 Dec;76(6):831-842.
    PMID: 31537406 DOI: 10.1016/j.eururo.2019.08.019
    BACKGROUND: Mutations in BRCA2 cause a higher risk of early-onset aggressive prostate cancer (PrCa). The IMPACT study is evaluating targeted PrCa screening using prostate-specific-antigen (PSA) in men with germline BRCA1/2 mutations.

    OBJECTIVE: To report the utility of PSA screening, PrCa incidence, positive predictive value of PSA, biopsy, and tumour characteristics after 3 yr of screening, by BRCA status.

    DESIGN, SETTING, AND PARTICIPANTS: Men aged 40-69 yr with a germline pathogenic BRCA1/2 mutation and male controls testing negative for a familial BRCA1/2 mutation were recruited. Participants underwent PSA screening for 3 yr, and if PSA > 3.0 ng/ml, men were offered prostate biopsy.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: PSA levels, PrCa incidence, and tumour characteristics were evaluated. Statistical analyses included Poisson regression offset by person-year follow-up, chi-square tests for proportion t tests for means, and Kruskal-Wallis for medians.

    RESULTS AND LIMITATIONS: A total of 3027 patients (2932 unique individuals) were recruited (919 BRCA1 carriers, 709 BRCA1 noncarriers, 902 BRCA2 carriers, and 497 BRCA2 noncarriers). After 3 yr of screening, 527 men had PSA > 3.0 ng/ml, 357 biopsies were performed, and 112 PrCa cases were diagnosed (31 BRCA1 carriers, 19 BRCA1 noncarriers, 47 BRCA2 carriers, and 15 BRCA2 noncarriers). Higher compliance with biopsy was observed in BRCA2 carriers compared with noncarriers (73% vs 60%). Cancer incidence rate per 1000 person years was higher in BRCA2 carriers than in noncarriers (19.4 vs 12.0; p =  0.03); BRCA2 carriers were diagnosed at a younger age (61 vs 64 yr; p =  0.04) and were more likely to have clinically significant disease than BRCA2 noncarriers (77% vs 40%; p =  0.01). No differences in age or tumour characteristics were detected between BRCA1 carriers and BRCA1 noncarriers. The 4 kallikrein marker model discriminated better (area under the curve [AUC] = 0.73) for clinically significant cancer at biopsy than PSA alone (AUC = 0.65).

    CONCLUSIONS: After 3 yr of screening, compared with noncarriers, BRCA2 mutation carriers were associated with a higher incidence of PrCa, younger age of diagnosis, and clinically significant tumours. Therefore, systematic PSA screening is indicated for men with a BRCA2 mutation. Further follow-up is required to assess the role of screening in BRCA1 mutation carriers.

    PATIENT SUMMARY: We demonstrate that after 3 yr of prostate-specific antigen (PSA) testing, we detect more serious prostate cancers in men with BRCA2 mutations than in those without these mutations. We recommend that male BRCA2 carriers are offered systematic PSA screening.

    Matched MeSH terms: Prostatic Neoplasms/genetics*
  16. Karunamuni RA, Huynh-Le MP, Fan CC, Thompson W, Eeles RA, Kote-Jarai Z, et al.
    Prostate Cancer Prostatic Dis, 2021 Jun;24(2):532-541.
    PMID: 33420416 DOI: 10.1038/s41391-020-00311-2
    BACKGROUND: Polygenic hazard scores (PHS) can identify individuals with increased risk of prostate cancer. We estimated the benefit of additional SNPs on performance of a previously validated PHS (PHS46).

    MATERIALS AND METHOD: 180 SNPs, shown to be previously associated with prostate cancer, were used to develop a PHS model in men with European ancestry. A machine-learning approach, LASSO-regularized Cox regression, was used to select SNPs and to estimate their coefficients in the training set (75,596 men). Performance of the resulting model was evaluated in the testing/validation set (6,411 men) with two metrics: (1) hazard ratios (HRs) and (2) positive predictive value (PPV) of prostate-specific antigen (PSA) testing. HRs were estimated between individuals with PHS in the top 5% to those in the middle 40% (HR95/50), top 20% to bottom 20% (HR80/20), and bottom 20% to middle 40% (HR20/50). PPV was calculated for the top 20% (PPV80) and top 5% (PPV95) of PHS as the fraction of individuals with elevated PSA that were diagnosed with clinically significant prostate cancer on biopsy.

    RESULTS: 166 SNPs had non-zero coefficients in the Cox model (PHS166). All HR metrics showed significant improvements for PHS166 compared to PHS46: HR95/50 increased from 3.72 to 5.09, HR80/20 increased from 6.12 to 9.45, and HR20/50 decreased from 0.41 to 0.34. By contrast, no significant differences were observed in PPV of PSA testing for clinically significant prostate cancer.

    CONCLUSIONS: Incorporating 120 additional SNPs (PHS166 vs PHS46) significantly improved HRs for prostate cancer, while PPV of PSA testing remained the same.

    Matched MeSH terms: Prostatic Neoplasms/genetics
  17. Patel VL, Busch EL, Friebel TM, Cronin A, Leslie G, McGuffog L, et al.
    Cancer Res, 2020 Feb 01;80(3):624-638.
    PMID: 31723001 DOI: 10.1158/0008-5472.CAN-19-1840
    Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in BRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 3' region of BRCA2 (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001-c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; P = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; P = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; P = 0.00004) and elevated risk of Gleason 8+ prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; P = 0.0002). No genotype-phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer. SIGNIFICANCE: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.
    Matched MeSH terms: Prostatic Neoplasms/genetics*
  18. Bancroft EK, Page EC, Castro E, Lilja H, Vickers A, Sjoberg D, et al.
    Eur Urol, 2014 Sep;66(3):489-99.
    PMID: 24484606 DOI: 10.1016/j.eururo.2014.01.003
    BACKGROUND: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in BRCA1/2 mutation carriers and controls) is an international consortium of 62 centres in 20 countries evaluating the use of targeted PCa screening in men with BRCA1/2 mutations.

    OBJECTIVE: To report the first year's screening results for all men at enrollment in the study.

    DESIGN, SETTING AND PARTICIPANTS: We recruited men aged 40-69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrollment, and those men with PSA >3 ng/ml were offered prostate biopsy.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types.

    RESULTS AND LIMITATIONS: We recruited 2481 men (791 BRCA1 carriers, 531 BRCA1 controls; 731 BRCA2 carriers, 428 BRCA2 controls). A total of 199 men (8%) presented with PSA >3.0 ng/ml, 162 biopsies were performed, and 59 PCas were diagnosed (18 BRCA1 carriers, 10 BRCA1 controls; 24 BRCA2 carriers, 7 BRCA2 controls); 66% of the tumours were classified as intermediate- or high-risk disease. The positive predictive value (PPV) for biopsy using a PSA threshold of 3.0 ng/ml in BRCA2 mutation carriers was 48%-double the PPV reported in population screening studies. A significant difference in detecting intermediate- or high-risk disease was observed in BRCA2 carriers. Ninety-five percent of the men were white, thus the results cannot be generalised to all ethnic groups.

    CONCLUSIONS: The IMPACT screening network will be useful for targeted PCa screening studies in men with germline genetic risk variants as they are discovered. These preliminary results support the use of targeted PSA screening based on BRCA genotype and show that this screening yields a high proportion of aggressive disease.

    PATIENT SUMMARY: In this report, we demonstrate that germline genetic markers can be used to identify men at higher risk of prostate cancer. Targeting screening at these men resulted in the identification of tumours that were more likely to require treatment.

    Matched MeSH terms: Prostatic Neoplasms/genetics*
  19. Albujja MH, Messaudi SA, Vasudevan R, Al Ghamdi S, Chong PP, Ghani KA, et al.
    Asian Pac J Cancer Prev, 2020 08 01;21(8):2271-2280.
    PMID: 32856855 DOI: 10.31557/APJCP.2020.21.8.2271
    BACKGROUND: The X-chromosome has been suggested to play a role in prostate cancer (PrCa) since epidemiological studies have provided evidence for an X-linked mode of inheritance for PrCa based on the higher relative risk among men who report an affected brother(s) as compared to those reporting an affected father. The aim of this study was to examine the potential association between the forensic STR markers located at four regions Xp22.31, Xq11.2-12, Xq26.2, and Xq28 and the risk of BPH and PrCa to confirm the impact of ChrX in the PrCa incidence. This may be helpful in the incorporation of STRs genetic variation in the early detection of men population at risk of developing PrCa.

    METHODS: DNA samples from 92 patients and 156 healthy controls collected from two medical centers in Riyadh, Saudi Arabia were analyzed for four regions located at X-chromosome using the Investigator® Argus X-12 QS Kit.

    RESULTS: The results demonstrated that microvariant alleles of (DXS7132, DXS10146, HPRTB, DXS10134, and DXS10135) are overrepresented in the BPH group (p < 0.00001). Allele 28 of DXS10135 and allele 15 of DXS7423 could have a protective effect, OR 0.229 (95%CI, 0.066-0.79); and OR 0.439 (95%CI, 0.208-0.925). On the other hand, patients carrying allele 23 of DXS10079 and allele 26 of DXS10148 presented an increased risk to PrCa OR 4.714 (95%CI, 3.604-6.166).

    CONCLUSION: The results are in concordance with the involvement of the X chromosome in PrCa and BPH development. STR allele studies may add further information from the definition of a genetic profile of PrCa resistance or susceptibility. As TBL1, AR, LDOC1, and RPL10 genes are located at regions Xp22.31, Xq11.2-12, Xq26.2, and Xq28, respectively, these genes could play an essential role in PrCa or BPH.

    Matched MeSH terms: Prostatic Neoplasms/genetics
  20. Hagen RM, Adamo P, Karamat S, Oxley J, Aning JJ, Gillatt D, et al.
    Am J Clin Pathol, 2014 Oct;142(4):533-40.
    PMID: 25239421 DOI: 10.1309/AJCPH88QHXARISUP
    The proto-oncogene ETS-related gene (ERG) is consistently overexpressed in prostate cancer. Alternatively spliced isoforms of ERG have variable biological activities; inclusion of exon 11 (72 base pairs [bp]) is associated with aggressiveness and progression of disease. Exon 10 (81 bp) has also been shown to be alternatively spliced. Within this study, we assess whether ERG protein, messenger RNA (mRNA), and ERG splice isoform mRNA expression is altered as prostate cancer progresses.
    Matched MeSH terms: Prostatic Neoplasms/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links