Displaying publications 1 - 20 of 266 in total

Abstract:
Sort:
  1. Lee PY, Chin SF, Neoh HM, Jamal R
    J Biomed Sci, 2017 Jun 12;24(1):36.
    PMID: 28606141 DOI: 10.1186/s12929-017-0342-z
    The human gut is home to complex microbial populations that change dynamically in response to various internal and external stimuli. The gut microbiota provides numerous functional benefits that are crucial for human health but in the setting of a disturbed equilibrium, the microbial community can cause deleterious outcomes such as diseases and cancers. Characterization of the functional activities of human gut microbiota is fundamental to understand their roles in human health and disease. Metaproteomics, which refers to the study of the entire protein collection of the microbial community in a given sample is an emerging area of research that provides informative details concerning functional aspects of the microbiota. In this mini review, we present a summary of the progress of metaproteomic analysis for studying the functional role of gut microbiota. This is followed by an overview of the experimental approaches focusing on fecal specimen for metaproteomics and is concluded by a discussion on the challenges and future directions of metaproteomic research.
    Matched MeSH terms: Proteomics*
  2. Rehiman SH, Lim SM, Neoh CF, Majeed ABA, Chin AV, Tan MP, et al.
    Ageing Res Rev, 2020 07;60:101066.
    PMID: 32294542 DOI: 10.1016/j.arr.2020.101066
    In order to gauge the impact of proteomics in discovery of Alzheimer's disease (AD) blood-based biomarkers, this study had systematically reviewed articles published between 1984-2019. Articles that fulfilled the inclusion criteria were assessed for risk of bias. A meta-analysis was performed for replicable candidate biomarkers (CB). Of the 1651 articles that were identified, 17 case-control and two cohort studies, as well as three combined case-control and longitudinal designs were shortlisted. A total of 207 AD and mild cognitive impairment (MCI) CB were discovered, with 48 reported in >2 studies. This review highlights six CB, namely alpha-2-macroglobulin (α2M)ps, pancreatic polypeptide (PP)ps, apolipoprotein A-1 (ApoA-1)ps, afaminp, insulin growth factor binding protein-2 (IGFBP-2)ps and fibrinogen-γ-chainp, all of which exhibited consistent pattern of regulation in >three independent cohorts. They are involved in AD pathogenesis via amyloid-beta (Aβ), neurofibrillary tangles, diabetes and cardiovascular diseases (CVD). Meta-analysis indicated that ApoA-1ps was significantly downregulated in AD (SMD = -1.52, 95% CI: -1.89, -1.16, p 
    Matched MeSH terms: Proteomics*
  3. Chen X, Yang B, Huang W, Wang T, Li Y, Zhong Z, et al.
    Int J Mol Sci, 2018 Dec 05;19(12).
    PMID: 30563128 DOI: 10.3390/ijms19123897
    Polyphenol oxidase (PPO) catalyzes the o-hydroxylation of monophenols and oxidation of o-diphenols to quinones. Although the effects of PPO on plant physiology were recently proposed, little has been done to explore the inherent molecular mechanisms. To explore the in vivo physiological functions of PPO, a model with decreased PPO expression and enzymatic activity was constructed on Clematis terniflora DC. using virus-induced gene silencing (VIGS) technology. Proteomics was performed to identify the differentially expressed proteins (DEPs) in the model (VC) and empty vector-carrying plants (VV) untreated or exposed to high levels of UV-B and dark (HUV-B+D). Following integration, it was concluded that the DEPs mainly functioned in photosynthesis, glycolysis, and redox in the PPO silence plants. Mapman analysis showed that the DEPs were mainly involved in light reaction and Calvin cycle in photosynthesis. Further analysis illustrated that the expression level of adenosine triphosphate (ATP) synthase, the content of chlorophyll, and the photosynthesis rate were increased in VC plants compared to VV plants pre- and post HUV-B+D. These results indicate that the silence of PPO elevated the plant photosynthesis by activating the glycolysis process, regulating Calvin cycle and providing ATP for energy metabolism. This study provides a prospective approach for increasing crop yield in agricultural production.
    Matched MeSH terms: Proteomics*
  4. Saadi S, Nacer NE, Saari N, Mohammed AS, Anwar F
    J Biotechnol, 2024 Mar 10;383:1-12.
    PMID: 38309588 DOI: 10.1016/j.jbiotec.2024.01.013
    The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.
    Matched MeSH terms: Proteomics*
  5. Lee PY, Osman J, Low TY, Jamal R
    Bioanalysis, 2019 Oct;11(19):1799-1812.
    PMID: 31617391 DOI: 10.4155/bio-2019-0145
    Plasma and serum are widely used for proteomics-based biomarker discovery. However, analysis of these biofluids is highly challenging due to the complexity and wide dynamic range of their proteomes. Notably, highly abundant proteins tend to obscure the detection of potential biomarkers that are usually of lower concentrations. Among the strategies to resolve this problem are: depletion of high-abundance proteins, enrichment of low abundant proteins of interest and prefractionation. In this review, we focus on current and emerging depletion techniques used to enhance the detection and identification of the less abundant proteins in plasma and serum. We discuss the applications and contributions of these methods to proteomics analysis of plasma and serum alongside their limitations and future perspectives.
    Matched MeSH terms: Proteomics
  6. Zhou C, Wu X, Pan D, Xia Q, Sun Y, Geng F, et al.
    Food Chem, 2024 Mar 15;436:137711.
    PMID: 37839122 DOI: 10.1016/j.foodchem.2023.137711
    To understand the mechanism of co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus (SX & SV) on structural protein degradation and taste enhancement of dry-cured bacon, protease activities, protein degradation, surface morphology of proteins and taste parameters of dry-cured bacon with Staphylococcus inoculation were investigated. The dry-cured bacon with co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus showed the best taste attributes. High residual activities in cathepsin B + L (more than 1.6-fold) and alanyl aminopeptidase (more than 1.4-fold) accelerated structural protein degradation in SX & SV. 32 down-regulated proteins were identified in SX & SV by TMT-labeled quantitative proteomic compared with control group; myosin and actin showed the most intense response to the accumulation of sweet and umami amino acids, and atomic force microscopy confirmed structural proteins breakdown by morphological changes. The accumulation of glutamic acid, alanine and lysine was mainly responsible for taste improvement of dry-cured bacon with Staphylococcus co-inoculation.
    Matched MeSH terms: Proteomics
  7. Ujang J, Sani AAA, Lim BH, Noordin R, Othman N
    Proteomics, 2018 12;18(23):e1700397.
    PMID: 30284757 DOI: 10.1002/pmic.201700397
    Entamoeba histolytica membrane proteins are important players toward the pathogenesis of amoebiasis, but the roles of most of the proteins are not fully understood. Since efficient protein extraction method is crucial for a successful MS analysis, three extractions methods are evaluated for the use in studying the membrane proteome of E. histolytica: Two commercial kits (ProteoExtract from Calbiochem and ProteoPrep from Sigma), and a conventional laboratory method. The results show that ProteoExtract and the conventional method gave higher protein yields compared to ProteoPrep. LC-ESI-MS/MS identifies 456, 482, and 551 membrane fraction proteins extracted using ProteoExtract, ProteoPrep, and a conventional method, respectively. In silico analysis predicts 108 (21%), 235 (45%), and 177 (34%) membrane proteins from the extracts of ProteoExtract, ProteoPrep, and the conventional method, respectively. Furthermore, analysis of the cytosolic and membrane fractions shows the highest selectivity of the membrane proteins using the ProteoPrep extraction kit. Overall, this study reports 828 E. histolytica membrane fraction proteins that include 249 predicted membrane proteins. The data are available via ProteomeXchange with identifier PXD010171.
    Matched MeSH terms: Proteomics/methods*
  8. Palasuberniam P, Tan KY, Chan YW, Blanco FB, Tan CH
    Trans R Soc Trop Med Hyg, 2023 Jun 02;117(6):428-434.
    PMID: 36611268 DOI: 10.1093/trstmh/trac125
    BACKGROUND: Philippine Cobra Antivenom (PCAV) is the only snake antivenom manufactured in the Philippines. It is used clinically to treat envenoming caused by the Philippine Spitting Cobra (Naja philippinensis). While PCAV is effective pharmacologically, it is crucial to ensure the safety profile of this biologic that is derived from animal plasma.

    METHODS: This study examined the composition purity of PCAV through a decomplexation proteomic approach, applying size-exclusion chromatography (SEC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    RESULTS: SDS-PAGE and SEC showed that the major protein in PCAV (constituting ∼80% of total proteins) is approximately 110 kDa, consistent with the F(ab')2 molecule. This protein is reducible into two subunits suggestive of the light and heavy chains of immunoglobulin G. LC-MS/MS further identified the proteins as equine immunoglobulins, representing the key therapeutic ingredient of this biologic product. However, protein impurities, including fibrinogens, alpha-2-macroglobulins, albumin, transferrin, fibronectin and plasminogen, were detected at ∼20% of the total antivenom proteins, unveiling a concern for hypersensitivity reactions.

    CONCLUSIONS: Together, the findings show that PCAV contains a favorable content of F(ab')2 for neutralization, while the antibody purification process awaits improvement to minimize the presence of protein impurities.

    Matched MeSH terms: Proteomics/methods
  9. Wong KK
    Comput Biol Chem, 2023 Aug;105:107897.
    PMID: 37247573 DOI: 10.1016/j.compbiolchem.2023.107897
    Immunotherapy development against colorectal cancer (CRC) is hindered by the lack of cell surface target highly expressed in cancer cells but with restricted presence in normal tissues to minimize off-tumor toxicities. In this in silico analysis, a longlist of genes (n = 13,488) expressed in CRCs according to the Human Protein Atlas (HPA) database were evaluated to shortlist for potential surface targets based on the following prerequisites: (i) Absent from the brain and lung tissues to minimize the likelihood of neurologic and pulmonary toxicities; (ii) Restricted expression profile in other normal human tissues; (iii) Genes that potentially encode cell surface proteins and; (iv) At least moderately expressed in CRC cases. Fifteen potential targets were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in CRCs derived from multiple datasets (i.e. DepMap, TCGA, CPTAC-2, and HPA CRCs). The top-ranked target with the highest and homogenous expression in CRCs was cadherin 17 (CDH17). Downstream analysis of CRC transcriptomics and proteomics datasets showed that CDH17 was significantly correlated with carcinoembryonic antigen expression. Moreover, CDH17 expression was significantly lower in CRC cases with high microsatellite instability, as well as negatively associated with immune response gene sets and the expression of MHC class I and II molecules. CDH17 represents an optimal target for therapeutic development against CRCs, and this study provides a novel framework to identify key cell surface targets for therapeutic development against other malignancies.
    Matched MeSH terms: Proteomics*
  10. Kovanich D, Low TY, Zaccolo M
    Int J Mol Sci, 2023 Feb 28;24(5).
    PMID: 36902098 DOI: 10.3390/ijms24054667
    cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
    Matched MeSH terms: Proteomics*
  11. Malih I, Ahmad rusmili MR, Tee TY, Saile R, Ghalim N, Othman I
    J Proteomics, 2014 Jan 16;96:240-52.
    PMID: 24269350 DOI: 10.1016/j.jprot.2013.11.012
    The proteome of the venom of Naja haje legionis, the only medically important elapid species in Morocco, has been elucidated by using a combination of proteomic techniques that includes size exclusion chromatography, reverse-phase HPLC, Tricine/SDS-Page, tryptic digestion, Q-TOF tandem mass spectrometry and database search. The sequence analysis of venom fractions revealed a highly complex venom proteome which counts a total of 76 proteins identified from database that can be assigned into 9 proteins families. We report the identification of: cobra venom factor (CVF), l-amino-acid oxidases (LAAO), acetylcholinesterase (AChE), snake venom metalloproteinases (SVMP), cysteine rich secretory proteins (CRISP), venom nerve growth factor (vNGF), phospholipases A2 (PLA2), vespryns, kunitz-type inhibitor, short neurotoxins, long neurotoxins, weak neurotoxins, neurotoxin like proteins, muscarinic toxins, cardiotoxins and cytotoxins. Comparison of these proteins showed high sequence homology with proteins from other African and Asian cobras. Further works are needed to assess the contribution of individual toxins in venom toxicity.
    Matched MeSH terms: Proteomics*
  12. Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, et al.
    J Proteome Res, 2015 Jul 2;14(7):2723-44.
    PMID: 26035454 DOI: 10.1021/acs.jproteome.5b00211
    In the rapidly growing economies of Asia and Oceania, food security has become a primary concern. With the rising population, growing more food at affordable prices is becoming even more important. In addition, the predicted climate change will lead to drastic changes in global surface temperature and changes in rainfall patterns that in turn will pose a serious threat to plant vegetation worldwide. As a result, understanding how plants will survive in a changing climate will be increasingly important. Such challenges require integrated approaches to increase agricultural production and cope with environmental threats. Proteomics can play a role in unraveling the underlying mechanisms for food production to address the growing demand for food. In this review, the current status of food crop proteomics is discussed, especially in regard to the Asia and Oceania regions. Furthermore, the future perspective in relation to proteomic techniques for the important food crops is highlighted.
    Matched MeSH terms: Proteomics*
  13. Chin CF, Teoh EY, Chee MJY, Al-Obaidi JR, Rahmad N, Lawson T
    Protein J, 2019 12;38(6):704-715.
    PMID: 31552579 DOI: 10.1007/s10930-019-09868-x
    Mango (Mangifera indica L.) is an economically important fruit. However, the marketability of mango is affected by the perishable nature and short shelf-life of the fruit. Therefore, a better understanding of the mango ripening process is of great importance towards extending its postharvest shelf life. Proteomics is a powerful tool that can be used to elucidate the complex ripening process at the cellular and molecular levels. This study utilized 2-dimensional gel electrophoresis (2D-GE) coupled with MALDI-TOF/TOF to identify differentially abundant proteins during the ripening process of the two varieties of tropical mango, Mangifera indica cv. 'Chokanan' and Mangifera indica cv 'Golden Phoenix'. The comparative analysis between the ripe and unripe stages of mango fruit mesocarp revealed that the differentially abundant proteins identified could be grouped into the three categories namely, ethylene synthesis and aromatic volatiles, cell wall degradation and stress-response proteins. There was an additional category for differential proteins identified from the 'Chokanan' variety namely, energy and carbohydrate metabolism. However, of all the differential proteins identified, only methionine gamma-lyase was found in both 'Chokanan' and 'Golden Phoenix' varieties. Six differential proteins were selected from each variety for validation by analysing their respective transcript expression using reverse transcription-quantitative PCR (RT-qPCR). The results revealed that two genes namely, glutathione S-transferase (GST) and alpha-1,4 glucan phosphorylase (AGP) were found to express in concordant with protein abundant. The findings will provide an insight into the fruit ripening process of different varieties of mango fruits, which is important for postharvest management.
    Matched MeSH terms: Proteomics/methods
  14. Yelamanchi SD, Tyagi A, Mohanty V, Dutta P, Korbonits M, Chavan S, et al.
    OMICS, 2018 12;22(12):759-769.
    PMID: 30571610 DOI: 10.1089/omi.2018.0160
    The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.
    Matched MeSH terms: Proteomics/methods*
  15. Binti Badlishah Sham NI, Lewin SD, Grant MM
    Proteomics Clin Appl, 2020 05;14(3):e1900043.
    PMID: 31419032 DOI: 10.1002/prca.201900043
    Proteomics has currently been a developing field in periodontal diseases to obtain protein information of certain samples. Periodontal disease is an inflammatory disorder that attacks the teeth, connective tissues, and alveolar bone within the oral cavity. Proteomics information can provide proteins that are differentially expressed in diseased or healthy samples. This review provides insight into approaches researching single species, multi species, bacteria, non-human, and human models of periodontal disease for proteomics information. The approaches that have been taken include gel electrophoresis and qualitative and quantitative mass spectrometry. This review is carried out by extracting information about in vitro and in vivo studies of proteomics in models of periodontal diseases that have been carried out in the past two decades. The research has concentrated on a relatively small but well-known group of microorganisms. A wide range of models has been reviewed and conclusions across the breadth of these studies are presented in this review.
    Matched MeSH terms: Proteomics*
  16. Rosilawati R, Nabila R, Siti Futri Farahininajua F, Nazni WA, Lee HL
    Trop Biomed, 2019 Dec 01;36(4):855-865.
    PMID: 33597458
    The mechanism of insecticide resistance is traditionally attributed to detoxification enzymes, target site alteration, decreased penetration of insecticides and behavioural resistance. Other form of mechanisms, such as the role of protein(s) in resistance is unknown. In the present study, the protein profiling of both IMR-PSS strain (permethrin-selected) and IMR-LS strain (laboratory-susceptible) 24 hours post exposure period to permethrin was carried out via 1D-gel electrophoresis and liquid chromatography mass spectrometry (LC-MS/ MS). The bands which appeared in the gel of 1D-electrophoresis revealed an abundance of proteins. The band pattern of both strains looked macroscopically alike and differed only in band intensity. However, LC-MS/MS analysis revealed that the IMR-PSS strain produced extra 388 peptides that were not found in the IMR-LS strain, indicating that IMR-PSS strain reacted differently from IMR-LS strain as a result of persistent exposure to permethrin. Since the complex banding patterns of 1D-gel electrophoresis were difficult to interpret the significance of the protein difference between IMR-PSS and IMR-LS strain, hence LC-MS/MS analysis is ideally suited for better protein resolution and thus will allow more in-depth comparison of the complex pattern. The findings here provide the first preliminary evidence that insecticide resistance in mosquito induces up regulation of proteins that may be protective to mosquitoes against insecticide and proteins could be another mechanism that contributes to development of resistance.
    Matched MeSH terms: Proteomics*
  17. Aizat WM, Hassan M
    Adv Exp Med Biol, 2018 11 2;1102:31-49.
    PMID: 30382567 DOI: 10.1007/978-3-319-98758-3_3
    Proteomics is the study of proteins, the workhorses of cells. Proteins can be subjected to various post-translational modifications, making them dynamic to external perturbation. Proteomics can be divided into four areas: sequence, structural, functional and interaction and expression proteomics. These different areas used different instrumentations and have different focuses. For example, sequence and structural proteomics mainly focus on elucidating a particular protein sequence and structure, respectively. Meanwhile, functional and interaction proteomics concentrate on protein function and interaction partners, whereas expression proteomics allows the cataloguing of total proteins in any given samples, hence providing a holistic overview of various proteins in a cell. The application of expression proteomics in cancer and crop research is detailed in this chapter. The general workflow of expression proteomics consisting the use of mass spectrometry instrumentation has also been described, and some examples of proteomics studies are also presented.
    Matched MeSH terms: Proteomics*
  18. Aizat WM, Ismail I, Noor NM
    Adv Exp Med Biol, 2018 11 2;1102:1-9.
    PMID: 30382565 DOI: 10.1007/978-3-319-98758-3_1
    The central dogma of molecular biology (DNA, RNA, protein and metabolite) has engraved our understanding of genetics in all living organisms. While the concept has been embraced for many decades, the development of high-throughput technologies particularly omics (genomics, transcriptomics, proteomics and metabolomics) has revolutionised the field to incorporate big data analysis including bioinformatics and systems biology as well as synthetic biology area. These omics approaches as well as systems and synthetic biology areas are now increasingly popular as seen by the growing numbers of publication throughout the years. Several journals which have published most of these related fields are also listed in this chapter to overview their impact and target journals.
    Matched MeSH terms: Proteomics/trends*
  19. Chan YW, Tan KY, Tan CH
    Toxicon, 2022 Dec;220:106942.
    PMID: 36240856 DOI: 10.1016/j.toxicon.2022.106942
    Snakebite envenoming is an important neglected tropical disease. Antivenom supply, however, remains limited in many parts of the world. This study aimed to examine the protein composition, immunoreactivity and neutralization efficacy of a new antivenom product (VINS Philippine Elapid Antivenoms, VPEAV) developed for the treatment of snakebite envenoming caused by the Philippine Cobra (Naja philippinensis), Samar Cobra (Naja samarensis) and King Cobra (Ophiophagus hannah). Size-exclusion chromatography, sodium-dodecyl sulfate-polyacrylamide gel electrophoresis and tandem mass spectrometry showed that VPEAV consisted of F(ab)'2 (∼90% of total antivenom proteins) with minimal protein impurities. Indirect ELISA showed varying immunoreactivity of VPEAV toward the different venoms (EC50 = 4-16 μg/ml), indicating distinct venom antigenicity between the species. In mice, the neutralization potency of VPEAV against the King Cobra venom was moderate (potency, P = 2.6 mg/ml, defined as the amount of venom completely neutralized per unit volume of antivenom). The potency was significantly lower against the N. philippinensis and N. samarensis venoms (P = 0.18-0.30 mg/ml), implying a higher dose may be needed for effective neutralization of the Naja venoms. Together, the findings suggest the potential and limitation of VPEAV in neutralizing the venom toxicity of the three Philippine elapid snakes.
    Matched MeSH terms: Proteomics/methods
  20. Lee PY, Low TY
    Methods Mol Biol, 2023;2690:299-310.
    PMID: 37450156 DOI: 10.1007/978-1-0716-3327-4_25
    Affinity purification coupled to mass spectrometry (AP-MS) is a powerful method to analyze protein-protein interactions (PPIs). The AP-MS approach provides an unbiased analysis of the entire protein complex and is useful to identify indirect interactors. However, reliable protein identification from the complex AP-MS experiments requires appropriate control of false identifications and rigorous statistical analysis. Another challenge that can arise from AP-MS analysis is to distinguish bona fide interacting proteins from the non-specifically bound endogenous proteins or the "background contaminants" that co-purified by the bait experiments. In this chapter, we will first describe the protocol for performing in-solution trypsinization for the samples from the AP experiment followed by LC-MS/MS analysis. We will then detail the MaxQuant workflow for protein identification and quantification for the PPI data derived from the AP-MS experiment. Finally, we describe the CRAPome interface to process the data by filtering against contaminant lists, score the interactions and visualize the protein interaction networks.
    Matched MeSH terms: Proteomics/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links