Displaying all 19 publications

Abstract:
Sort:
  1. Samavati A, Othaman Z, Ghoshal SK, Dousti MR, Kadir MR
    Int J Mol Sci, 2012;13(10):12880-9.
    PMID: 23202927 DOI: 10.3390/ijms131012880
    The visible luminescence from Ge nanoparticles and nanocrystallites has generated interest due to the feasibility of tuning band gap by controlling the sizes. Germanium (Ge) quantum dots (QDs) with average diameter ~16 to 8 nm are synthesized by radio frequency magnetron sputtering under different growth conditions. These QDs with narrow size distribution and high density, characterized using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) are obtained under the optimal growth conditions of 400 °C substrate temperature, 100 W radio frequency powers and 10 Sccm Argon flow. The possibility of surface passivation and configuration of these dots are confirmed by elemental energy dispersive X-ray (EDX) analysis. The room temperature strong visible photoluminescence (PL) from such QDs suggests their potential application in optoelectronics. The sample grown at 400 °C in particular, shows three PL peaks at around ~2.95 eV, 3.34 eV and 4.36 eV attributed to the interaction between Ge, GeO(x) manifesting the possibility of the formation of core-shell structures. A red shift of ~0.11 eV in the PL peak is observed with decreasing substrate temperature. We assert that our easy and economic method is suitable for the large-scale production of Ge QDs useful in optoelectronic devices.
    Matched MeSH terms: Quantum Dots/chemistry*
  2. Al-Douri Y, Badi N, Voon CH
    Luminescence, 2018 Mar;33(2):260-266.
    PMID: 29024360 DOI: 10.1002/bio.3408
    Carbon-based quantum dots (C-QDs) were synthesized through microwave-assisted carbonization of an aqueous starch suspension mediated by sulphuric and phosphoric acids. The as-prepared C-QDs showed blue, green and yellow luminescence without the addition of any surface-passivating agent. The C-QDs were further analyzed by UV-vis spectroscopy to measure the optical response of the organic compound. The energy gaps revealed narrow sizing of C-QDs in the semiconductor range. The optical refractive index and dielectric constant were investigated. The C-QDs size distribution was characterized. The results suggested an easy route to the large scale production of C-QDs materials.
    Matched MeSH terms: Quantum Dots/chemistry*
  3. Lim PF, Leong KH, Sim LC, Abd Aziz A, Saravanan P
    Environ Sci Pollut Res Int, 2019 Feb;26(4):3455-3464.
    PMID: 30515688 DOI: 10.1007/s11356-018-3821-1
    In this work, a sunlight-sensitive photocatalyst of nanocubic-like titanium dioxide (TiO2) and N-doped graphene quantum dots (N-GQDs) is developed through a simple hydrothermal and physical mixing method. The successful amalgamation composite photocatalyst characteristics were comprehensively scrutinized through various physical and chemical analyses. A complete removal of bisphenol A (BPA) is attained by a synthesized composite after 30 min of sunlight irradiation as compared to pure TiO2. This clearly proved the unique contribution of N-GQDs that enhanced the ability of light harvesting especially under visible light and near-infrared region. This superior characteristic enables it to maximize the absorbance in the entire solar spectrum. However, the increase of N-GQDs weight percentage has created massive oxygen vacancies that suppress the generation of active radicals. This resulted in a longer duration for a complete removal of BPA as compared to lower weight percentage of N-GQDs. Hence, this finding can offer a new insight in developing effective sunlight-sensitive photocatalysts for various complex organic pollutants degradation.
    Matched MeSH terms: Quantum Dots/chemistry*
  4. Sonthanasamy RSA, Ahmad WYW, Fazry S, Hassan NI, Lazim AM
    Carbohydr Polym, 2016 Feb 10;137:488-496.
    PMID: 26686155 DOI: 10.1016/j.carbpol.2015.11.021
    Being abundant in many tropical part of the world, Dioscorea sp. as food is limited due to its toxicity. However polysaccharides derive from these tubers could be important for other applications. Here we developed a Highly Luminescent Carbon Nanodots (C-dots) via acid hydrolysis of Gadong starch (GS). The hydrolysis rate of GS increased from 49% to 86% within 7 days while the X-ray diffraction showed the native GS particle is a C-crystalline type. The GS particles were either round or oval with diameters ranging from 50-90 nm. Further acid dehydration and surface oxidation reduced the size of GS nanoparticles to 6-25 nm. The C-dots produced a fluorescent emission at wavelength 441 nm. Toxicity tests demonstrate that zebrafish embryo were able to tolerate the C-dots for 48 h after exposure. This study has successfully demonstrated a novel approach of converting GS into excellent fluorescent C-dot.
    Matched MeSH terms: Quantum Dots/chemistry*
  5. Fong JFY, Chin SF, Ng SM
    Biosens Bioelectron, 2016 Nov 15;85:844-852.
    PMID: 27290666 DOI: 10.1016/j.bios.2016.05.087
    Carbon dots (CDs) that showed strong blue fluorescence were successfully synthesised from sodium alginate via furnace pyrolysis. The single step pyrolytic synthesis was simple to perform while yielded CDs with high photostability, good water solubility and minimum by-products. In order to design the probe with "turn-on" sensing capability, the CDs were screened against a series of metal cations to first "turn-off" the fluorescence. It was found that ferric ions (Fe(3+)) were most responsive and effective in quenching the fluorescence of CDs. Based on this observation, the conditioning of the probe was performed to ensure the fluorescence was completely quenched, while not overloading the system with Fe(3+). At the optimised condition, the CDs-Fe(3+) mixture served as a highly specific detection probe for ascorbic acid (AA). The analytical potential of the probe was evaluated and showed a good linear range of response for AA concentration of 24-40μg/mL. The selectivity study against other possible co-existing species was carried out and proved that our unique "turn-on" fluorescence signalling strategy was highly effective and selective towards AA as the target analyte. The probe was demonstrated for quantification of AA in real samples, which was the commercially available vitamin C supplement. The result showed good accuracy with minimum deviation from standard method adopted for validation purpose.
    Matched MeSH terms: Quantum Dots/chemistry*
  6. Manan FAA, Hong WW, Abdullah J, Yusof NA, Ahmad I
    PMID: 30889711 DOI: 10.1016/j.msec.2019.01.082
    Novel biosensor architecture based on nanocrystalline cellulose (NCC)/CdS quantum dots (QDs) nanocomposite was developed for phenol determination. This nanocomposite was prepared with slight modification of nanocrystalline cellulose (NCC) with cationic surfactant of cetyltriammonium bromide (CTAB) and further decorated with 3-mercaptopropionic acid (3-MPA) capped CdS QDs. The nanocomposite material was then employed as scaffold for immobilization of tyrosinase enzyme (Tyr). The electrocatalytic response of Tyr/CTAB-NCC/QDs nanocomposite towards phenol was evaluated using differential pulse voltammetry (DPV). The current response obtained is proportional to the concentration of phenol which attributed to the reduction of o-quinone produced at the surface of the modified electrode. Under the optimal conditions, the biosensor exhibits good linearity towards phenol in the concentration range of 5-40 μM (R2 = 0.9904) with sensitivity and limit of detection (LOD) of 0.078 μA/μM and 0.082 μM, respectively.
    Matched MeSH terms: Quantum Dots/chemistry*
  7. Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, et al.
    Biomed Res Int, 2014;2014:307519.
    PMID: 25165697 DOI: 10.1155/2014/307519
    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.
    Matched MeSH terms: Quantum Dots/chemistry
  8. Ng SM, Wong DS, Phung JH, Chin SF, Chua HS
    Talanta, 2013 Nov 15;116:514-9.
    PMID: 24148438 DOI: 10.1016/j.talanta.2013.07.031
    Quantum dots are fluorescent semiconductor nanoparticles that can be utilised for sensing applications. This paper evaluates the ability to leverage their analytical potential using an integrated fluorescent sensing probe that is portable, cost effective and simple to handle. ZnO quantum dots were prepared using the simple sol-gel hydrolysis method at ambient conditions and found to be significantly and specifically quenched by copper (II) ions. This ZnO quantum dots system has been incorporated into an in-house developed miniature fluorescent probe for the detection of copper (II) ions in aqueous medium. The probe was developed using a low power handheld black light as excitation source and three photo-detectors as sensor. The sensing chamber placed between the light source and detectors was made of 4-sided clear quartz windows. The chamber was housed within a dark compartment to avoid stray light interference. The probe was operated using a microcontroller (Arduino Uno Revision 3) that has been programmed with the analytical response and the working algorithm of the electronics. The probe was sourced with a 12 V rechargeable battery pack and the analytical readouts were given directly using a LCD display panel. Analytical optimisations of the ZnO quantum dots system and the probe have been performed and further described. The probe was found to have a linear response range up to 0.45 mM (R(2)=0.9930) towards copper (II) ion with a limit of detection of 7.68×10(-7) M. The probe has high repeatable and reliable performance.
    Matched MeSH terms: Quantum Dots/chemistry*
  9. Jahangir MA, Gilani SJ, Muheem A, Jafar M, Aslam M, Ansari MT, et al.
    Pharm Nanotechnol, 2019;7(3):234-245.
    PMID: 31486752 DOI: 10.2174/2211738507666190429113906
    BACKGROUND: The amalgamation of biological sciences with nano stuff has significantly expedited the progress of biological strategies, greatly promoting practical applications in biomedical fields.

    OBJECTIVE: With distinct optical attributes (e.g., robust photostability, restricted emission spectra, tunable broad excitation, and high quantum output), fluorescent quantum dots (QDs) have been feasibly functionalized with manageable interfaces and considerably utilized as a new class of optical probe in biological investigations.

    METHODS: In this review article, we structured the current advancements in the preparation methods and attributes of QDs. Furthermore, we extend an overview of the outstanding potential of QDs for biomedical research and radical approaches to drug delivery.

    CONCLUSION: Notably, the applications of QDs as smart next-generation nanosystems for neuroscience and pharmacokinetic studies have been explained. Moreover, recent interests in the potential toxicity of QDs are also apprised, ranging from cell investigations to animal studies.

    Matched MeSH terms: Quantum Dots/chemistry*
  10. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Quantum Dots/chemistry*
  11. Sonthanasamy RSA, Sulaiman NMN, Tan LL, Lazim AM
    PMID: 30954801 DOI: 10.1016/j.saa.2019.03.108
    Carbon dots (C-dots) were used to study the binding mechanisms with serum protein, bovine serum albumin (BSA) by using two notable binding systems known as non-covalent and covalent interaction. Interaction between C-dots and BSA were estimated by Stern-Volmer equation and Double Log Regression Model (DLRM). According to the fluorescent intensity, quenching of model carrier protein by C-dots was due to dynamic quenching for non-covalent and static quenching for covalent binding. The binding site constant, KA and number of binding site, for covalent interaction is 1754.7L/mol and n≈1 (0.6922) were determined by DLRM on fluorescence quenching results. The blue shift of the fluorescence spectrum, from 450nm to 421nm (non-covalent) and 430nm (covalent) and suggested that both the microenvironment of C-dots and protein changed in relation to the protein concentration. The fluorescence intensity results show that protein structure has a significant role in Protein-C-dots interactions and type of binding influence physicochemical properties of C-dots differently. Understanding to this bio interface is important to utilize both quantum dots and biomolecules for biomedical field. It can be a useful guideline to design further applications in biomedical and bioimaging.
    Matched MeSH terms: Quantum Dots/chemistry
  12. Ibrahim I, Lim HN, Huang NM, Jiang ZT, Altarawneh M
    J Hazard Mater, 2020 06 05;391:122248.
    PMID: 32062348 DOI: 10.1016/j.jhazmat.2020.122248
    Nowadays, increasing the risk for copper leaching into the drinking water in homes, hotels and schools has become unresolved issues all around the countries such as Canada, the United States, and Malaysia. The leaching of copper in tap water is due to a combination of acidic water, damaged pipes, and corroded plumbing fixtures. To remedy this global problem, a triple interconnected structure of CdS/Au/GQDs was designed as a photo-to-electron conversion medium for a real time and selective visible-light-prompt photoelectrochemical (PEC) sensor for Cu2+ ions in real water samples. The synergistic interaction of the CdS/Au/GQDs enabled the smooth transportation of charge carriers to the charge collector and provided a channel to inhibit the charge recombination reaction. Thus, a detection limit of 2.27 nM was obtained, which is 10,000 fold lower than that of WHO's Guidelines for Drinking-water Quality (∼30 μM). The photocurrent reduction was negligible after 30 days of storage under ambient conditions, suggesting the high stability of photoelectrode. Moreover, the real-time monitoring of Cu2+ ions in real samples was performed with satisfactory results, confirming the capability of the investigated photoelectrode as the most practical detector for trace amounts of Cu2+ ions.
    Matched MeSH terms: Quantum Dots/chemistry
  13. Awaludin N, Abdullah J, Salam F, Ramachandran K, Yusof NA, Wasoh H
    Anal Biochem, 2020 12 01;610:113876.
    PMID: 32750357 DOI: 10.1016/j.ab.2020.113876
    The identification of rice bacterial leaf blight disease requires a simple, rapid, highly sensitive, and quantitative approach that can be applied as an early detection monitoring tool in rice health. This paper highlights the development of a turn-off fluorescence-based immunoassay for the early detection of Xanthomonas oryzae pv. oryzae (Xoo), a gram-negative bacterium that causes rice bacterial leaf blight disease. Antibodies against Xoo bacterial cells were produced as specific bio-recognition molecules and the conjugation of these antibodies with graphene quantum dots and gold nanoparticles was performed and characterized, respectively. The combination of both these bio-probes as a fluorescent donor and metal quencher led to changes in the fluorescence signal. The immunoreaction between AntiXoo-GQDs, Xoo cells, and AntiXoo-AuNPs in the immuno-aggregation complex led to the energy transfer in the turn-off fluorescence-based quenching system. The change in fluorescence intensity was proportional to the logarithm of Xoo cells in the range of 100-105 CFU mL-1. The limit of detection was achieved at 22 CFU mL-1 and the specificity test against other plant disease pathogens showed high specificity towards Xoo. The detection of Xoo in real plant samples was also performed in this study and demonstrated satisfactory results.
    Matched MeSH terms: Quantum Dots/chemistry
  14. Ngo DB, Chaibun T, Yin LS, Lertanantawong B, Surareungchai W
    Anal Bioanal Chem, 2021 Feb;413(4):1027-1037.
    PMID: 33236225 DOI: 10.1007/s00216-020-03061-1
    The aim of this study was to develop a highly specific electrochemical DNA sensor using functionalized lead sulphide (PbS) quantum dots for hepatitis E virus genotype 3 (HEV3) DNA target detection. Functionalized-PbS quantum dots (QDs) were used as an electrochemical label for the detection of HEV3-DNA target by the technique of square wave anodic stripping voltammetry (SWASV). The functionalized-PbS quantum dots were characterized by UV-vis, FTIR, XRD, TEM and zeta potential techniques. As-prepared, functionalized-PbS quantum dots have an average size of 4.15 ± 1.35 nm. The detection platform exhibited LOD and LOQ values of 1.23 fM and 2.11 fM, respectively. HEV3-DNA target spiked serum is also reported.Graphical abstract.
    Matched MeSH terms: Quantum Dots/chemistry*
  15. Shojaei TR, Salleh MA, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, et al.
    PMID: 27380305 DOI: 10.1016/j.saa.2016.06.052
    Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13μgmL(-1) and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program.
    Matched MeSH terms: Quantum Dots/chemistry
  16. Wee SS, Ng YH, Ng SM
    Talanta, 2013 Nov 15;116:71-6.
    PMID: 24148375 DOI: 10.1016/j.talanta.2013.04.081
    Carbon dots have great potential to be utilised as an optical sensing probe due to its unique photoluminescence and less toxic properties. This work reports a simple and novel synthesis method of carbon dots via direct acid hydrolysis of bovine serum albumin protein in a one-pot approach. Optimisation of the important synthetic parameters has been performed which consists of temperature effect, acid to protein ratio and kinetics of reaction. Higher temperature has promoted better yield with shorter reaction time. The carbon dots obtained shows a strong emission at the wavelength of 400 nm with an optimum excitation of 305 nm. The potential of the carbon dots as optical sensing probe has been investigated on with different cations that are of environmental and health concern. The fluorescence of the carbon dots was significantly quenched particularly by lead (II) ions in a selective manner. Further analytical study has been performed to leverage the performance of the carbon dots for lead (II) ions sensing using the standard Stern-Volmer relationship. The sensing probe has a dynamic linear range up to 6.0 mM with a Stern-Volmer constant of 605.99 M(-1) and a limit of detection (LOD) of 5.05 μM. The probe performance was highly repeatable with a standard deviation below 3.0%. The probe suggested in this study demonstrates the potential of a more economical and greener approach that uses protein based carbon dots for sensing of heavy metal ions.
    Matched MeSH terms: Quantum Dots/chemistry*
  17. Ahmad P, Khandaker MU, Muhammad N, Rehman F, Ullah Z, Khan G, et al.
    Appl Radiat Isot, 2020 Dec;166:109404.
    PMID: 32956924 DOI: 10.1016/j.apradiso.2020.109404
    The shortcomings in Boron neutron capture therapy (BNCT) and Hyperthermia for killing the tumor cell desired for the synthesis of a new kind of material suitable to be first used in BNCT and later on enable the conditions for Hyperthermia to destroy the tumor cell. The desire led to the synthesis of large band gap semiconductor nano-size Boron-10 enriched crystals of hexagonal boron nitride (10BNNCs). The contents of 10BNNCs are analyzed with the help of x-ray photoelectron spectroscopy (XPS) and counter checked with Raman and XRD. The 10B-contents in 10BNNCs produce 7Li and 4He nuclei. A Part of the 7Li and 4He particles released in the cell is allowed to kill the tumor (via BNCT) whereas the rest produce electron-hole pairs in the semiconductor layer of 10BNNCs suggested to work in Hyperthermia with an externally applied field.
    Matched MeSH terms: Quantum Dots/chemistry
  18. Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH
    Mikrochim Acta, 2019 11 19;186(12):804.
    PMID: 31745737 DOI: 10.1007/s00604-019-3913-8
    A fluorometric assay is described for highly sensitive quantification of Escherichia coli O157:H7. Reporter oligos were immobilized on graphene quantum dots (GQDs), and quencher oligos were immobilized on gold nanoparticles (AuNPs). Target DNA was co-hybridized with reporter oligos on the GQDs and quencher oligos on AuNPs. This triggers quenching of fluorescence (with excitation/emission peaks at 400 nm/530 nm). On introducing target into the system, fluorescence is quenched by up to 95% by 100 nM concentrations of target oligos having 20 bp. The response to the fliC gene of E. coli O157:H7 increases with the logarithm of the concentration in the range from 0.1 nM to 150 nM. The limit of detection is 1.1 ± 0.6 nM for n = 3. The selectivity and specificity of the assay was confirmed by evaluating the various oligos sequences and PCR product (fliC gene) amplified from genomic DNA of the food samples spiked with E. coli O157:H7. Graphical abstractSchematic representation of fluorometric assay for highly sensitive quantification of Escherichia coli O157:H7 based on fluorescence quenching gene assay for fliC gene of E. coli O157:H7.
    Matched MeSH terms: Quantum Dots/chemistry*
  19. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
    Matched MeSH terms: Quantum Dots/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links