Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Yii MW, Zaharudin A, Abdul-Kadir I
    Appl Radiat Isot, 2009 Apr;67(4):630-5.
    PMID: 19168367 DOI: 10.1016/j.apradiso.2008.11.019
    Studies of naturally occurring radioactive materials (NORM) distribution of (226)Ra, (228)Ra and (40)K in East Malaysia were carried out as part of a marine coastal environment project. The results of measurements will serve as baseline data and background reference level for Malaysia coastlines. Sediments from 21 coastal locations and 10 near shore locations were collected for analyses. The samples were dried, finely ground, sealed in a container and stored for a minimum of 30 days to establish secular equilibrium between (226)Ra and (228)Ra and their respective radioactive progenies. They were counted using a high-purity germanium (HPGe) spectrometer covering the respective progeny energy peak. For (40)K, the presence of this was measured directly via its 1460 keV energy peak. The concentration of (226)Ra, (228)Ra and (40)K in samples obtained from coastal Sarawak ranged between 23 and 41 (mean 30+/-2) Bq/kg, 27 and 45 (mean 39+/-4) Bq/kg and 142 and 680 (mean 462+/-59) Bq/kg, respectively. Meanwhile, the concentration of (226)Ra, (228)Ra and (40)K for samples obtained from coastal Sabah ranged between 16 and 30 (mean 23+/-2) Bq/kg, 23 and 45 (mean 35+/-4) Bq/kg and 402 and 842 (mean 577+/-75) Bq/kg, respectively. For the Sarawak near shore stations, the concentration of (226)Ra, (228)Ra and (40)K ranged between 11 and 36 (mean 22+/-2) Bq/kg, 21 and 65 (mean 39+/-5) Bq/kg and 149 and 517 (mean 309+/-41) Bq/kg, respectively. Meanwhile, the concentration of (226)Ra, (228)Ra and (40)K for samples obtained from Sabah ranged between 9 and 31 (mean 14+/-2) Bq/kg, 10 and 48 (mean 21+/-3) Bq/kg and 140 and 580 (mean 269+/-36) Bq/kg, respectively. The calculated external hazard values of between 0.17 and 0.33 (less than unity) showed that there is little risk of external hazard to the workers handling the sediments.
    Matched MeSH terms: Radioisotopes/analysis*
  2. Bhuiyan MK, Siddique MA, Zafar M, Mustafa Kamal AH
    Isotopes Environ Health Stud, 2014;50(1):134-41.
    PMID: 24090093 DOI: 10.1080/10256016.2013.830613
    Concentrations of natural and fall-out radionuclides in the offshore seawater and sediment from some parts of the Bay of Bengal, Bangladesh, were determined using a coaxial germanium detector. The average activities of (238)U, (232)Th, (40)K and (137)Cs were recorded as 31.2±5.8, 51.9±9.4, 686.4±170.5 and 0.5±0.6 Bq kg(-1) dry weight, respectively, for sediment, and 4.8±1.2, 5.4±1.2 and 39.1±8.6 Bq L(-1) for (238)U, (232)Th and (40)K, respectively, in seawater. The concentration of (137)Cs in seawater was below the detection limit. The concentration of sediment (238)U was found to be positively correlated with (232)Th ([Formula: see text], p<0.05) and (40)K (r=0.96, p<0.01), while (232)Th was positively correlated with (40)K (r=0.91, p<0.05). In sediment, the concentration of (238)U was negatively correlated (r=-0.86, p<0.05) with sea depth. In the seawater sample, the only significant relationship found was between concentration of (232)Th and water depth (r=-0.86, p<0.05). One-factor analysis of variance (ANOVA) showed that the level of radioisotope concentrations of seawater and sediment was highly significant for (238)U (F=122, df=11, p=0.01), (232)Th (F=143, df=11, p=0.01) and (40)K (F=86, df=11, p=0.01). The results showed that the level of radioactivity decreased from coast to open sea. Imminent threat due to radioactivity was not observed in these parts of the Bay of Bengal.
    Matched MeSH terms: Potassium Radioisotopes/analysis; Radioisotopes/analysis*
  3. Dougherty G, Ng CE
    Health Phys, 1982 Dec;43(6):915-9.
    PMID: 7152953
    Matched MeSH terms: Cesium Radioisotopes/analysis*; Potassium Radioisotopes/analysis*
  4. Lowe BG
    Health Phys, 1979 Jun;36(6):723-4.
    PMID: 468543
    Matched MeSH terms: Cesium Radioisotopes/analysis*; Potassium Radioisotopes/analysis*
  5. Monica S, Jojo PJ, Khandaker MU
    Int J Radiat Biol, 2020 08;96(8):1028-1037.
    PMID: 32394771 DOI: 10.1080/09553002.2020.1767816
    Purpose: Ayurveda is one of the oldest systems of medicines in the world being practiced widely in the Indian subcontinent for more than 3000 years, and still remains as one of the important traditional health care systems. The Ayurvedic drugs are derived primarily from various parts of the plants, like root, leaf, flower, fruit or plant as a whole. Plants uptake minerals and other nutrients from the soil through their root system. Along with other minerals radionuclides present in the growing media also reach to the plant parts following the same pathway. Realizing the probable health hazards via the intake of Ayurvedic drugs, it is important to assess the concentration of natural radionuclides in commonly used medicinal plants.Materials and methods: NaI(Tl) scintillator-based gamma-ray spectrometry has been used to determine the activity concentrations of primordial radionuclides (226Ra, 232Th and 40K) in the most commonly used medicinal plant parts as ingredients of Ayurvedic medicines in India.Results and discussion: The average specific activity (Bqkg-1) of 226Ra, 232Th and 40K was found to be 43 ± 18, 36 ± 15[Formula: see text] and 230 ± 46, respectively. The estimated annual committed effective doses due to the intake of common Ayurvedic medicines at prescribed dosage was found to be 39 ± 16 µSv y-1,[Formula: see text] which is quite low as compared with the radiation dose limit of 1 mSvy-1 from all natural sources, reported by the International Commission on Radiological Protection (ICRP-60).Conclusions: It is found categorically that intake of Ayurvedic medicines at normal dosage poses no radiological hazard to the individual. Present results are significant in the wake of myths that many hazardous materials including radioisotopes are present at higher levels. Obtained results also serve as a reference information for the distribution of radionuclides in medicinal plant species.
    Matched MeSH terms: Radioisotopes/analysis*
  6. Khandaker MU, Zayadi NSB, Sani SFA, Bradley DA, Osman H, Alzamil Y, et al.
    Radiat Prot Dosimetry, 2023 Nov 02;199(18):2174-2178.
    PMID: 37934995 DOI: 10.1093/rpd/ncad179
    Present study concerns the radiological character of Malaysian honey. A total of 18 samples (representative of the various most common types) were obtained from various honey bee farms throughout the country. Using a high-purity germanium γ-ray spectroscopic system, the samples were analysed for the naturally occurring radionuclides 226Ra, 228Ra and 40K. The respective range of activities (in Bq/kg) was: 3.49 ± 0.35 to 4.51 ± 0.39, 0.99 ± 0.37 to 1.74 ± 0.39 and 41.37 ± 3.26 to 105.02 ± 6.91. The estimated associated committed effective doses were derived from prevailing data on national consumption of honey, the annual dose being found low compared with the UNSCEAR reference dose limit of 290 μSv y-1. The estimated threshold consumption rate for honey indicates a maximum intake of 339 g/d, which poses an insignificant radiological risk to public health; however, the total dietary exposure may not, the guidance level of 290 μSv y-1 being applicable to dietary intake of all foodstuffs. The study is in support of the cultivation of a healthy lifestyle, acknowledging prevailing radioactivity within the environment.
    Matched MeSH terms: Potassium Radioisotopes/analysis
  7. Alomari AH, Saleh MA, Hashim S, Alsayaheen A, Abukashabeh A
    Isotopes Environ Health Stud, 2019 May;55(2):211-226.
    PMID: 30789050 DOI: 10.1080/10256016.2019.1581776
    An extensive study was conducted to determine the activity concentrations of natural and artificial radionuclides 226Ra, 232Th, 40K, and 137Cs in soil samples of each governate of Jordan. A total of 370 samples have been measured using a high-purity germanium detector. The activity concentration for 226Ra, 232Th, 40K, and 137Cs has mean values of 42 ± 3, 23 ± 3, 309 ± 21, and 3.7 ± 0.9 Bq kg-1, respectively. The highest mean activity concentration for 226Ra was found to be 138 ± 4 Bq kg-1 in the Alkarak governate. In the Ajloun and Jarash governates, the highest mean activity concentration was 35 ± 3 Bq kg-1 for 232Th, and 14.2 ± 1.9 Bq kg-1 for 137Cs, respectively. Geological influence on the activity concentrations was investigated using the one-way analysis of variance (ANOVA) and independent samples. The ANOVA results indicate that there are strong significant differences between the activity concentrations of 232Th, 40K, and 137Cs based on geological formations the radionuclides occur. The main contribution to gamma dose rate was due to 226Ra activity concentration. Radium equivalent and external hazard index are associated with a mean value of 98 Bq kg-1, and 0.266, respectively.
    Matched MeSH terms: Cesium Radioisotopes/analysis; Potassium Radioisotopes/analysis; Radioisotopes/analysis*
  8. Theng TL, Mohamed CA
    J Environ Radioact, 2005;80(3):273-86.
    PMID: 15725503
    Natural radionuclides, such as (210)Po and (210)Pb were measured in the water samples collected from six stations at Kuala Selangor, Malaysia. Results for (210)Po and (210)Pb in dissolved and particulate phases have showed the difference in distribution and chemical behavior. The fluctuation activities of (210)Po and (210)Pb depend on wave action, geology and degree of fresh water input occurring at study areas and probably due to different sampling dates. The distribution coefficient, K(d), values of (210)Po and (210)Pb ranged from 2.0 x 10(3)lg(-1) to 265.15 x 10(5)lg(-1), and from 3.0 x 10(3)lg(-1) to 558.16 x 10(5)lg(-1), respectively. High K(d) values of (210)Po and (210)Pb indicated that a strong adsorption of (210)Po and (210)Pb onto suspended particles, and the sinking of both nuclides on the seabed at study locations were controlled by the characteristics of suspended particles.
    Matched MeSH terms: Lead Radioisotopes/analysis*
  9. Chong CS, Ahmad GU
    Health Phys, 1982 Aug;43(2):272-3.
    PMID: 7129886
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  10. Garcia-Tenorio R, Rozmaric M, Harms A, Godoy JMO, Barsanti M, Schirone A, et al.
    Mar Pollut Bull, 2020 Oct;159:111490.
    PMID: 32738641 DOI: 10.1016/j.marpolbul.2020.111490
    Laboratories from 14 countries (with different levels of expertise in radionuclide measurements and 210Pb dating) participated in an interlaboratory comparison exercise (ILC) related to the application of 210Pb sediment dating technique within the framework of the IAEA Coordinated Research Project. The laboratories were provided with samples from a composite sediment core and were required to provide massic activities of several radionuclides and an age versus depth model from the obtained results, using the most suitable 210Pb dating model. Massic concentrations of Zn and Cu were also determined to be used for chronology validation. The ILC results indicated good analytical performances while the dating results didn't demonstrate the same degree of competence in part due to the different experience in dating of the participant laboratories. The ILC exercise enabled evaluation of the difficulties faced by laboratories implementing 210Pb dating methods and identified some limitations in providing reliable chronologies.
    Matched MeSH terms: Lead Radioisotopes/analysis*
  11. Maxwell O, Emmanuel JS, Olusegun AO, Cyril EO, Ifeanyi AT, Embong Z
    Radiat Prot Dosimetry, 2019 May 01;183(3):332-335.
    PMID: 30085254 DOI: 10.1093/rpd/ncy121
    Building materials of different brands were assessed for the concentrations of 226Ra, 232Th and 40K using HPGe detector. The activity concentrations in the measured samples ranged from 27 ± 8 to 82 ± 8 Bq kg-1 for 226Ra, 41 ± 4 to 101 ± 8 Bq kg-1 for 232Th and 140 ± 8 to 940 ± 19 Bq kg-1 for 40K, respectively. The Radium equivalent (Raeq) activity from the samples was found to be <370 Bq kg-1 as the recommended value for construction materials. This study will set a baseline data for significant standards on radiation exposure of the measured radionuclides in the selected building materials used in Nigeria.
    Matched MeSH terms: Potassium Radioisotopes/analysis*
  12. Ng AH, Alqahtani MS, Jambi LK, Bugby SL, Lees JE, Perkins AC
    Br J Radiol, 2019 Jun;92(1098):20190020.
    PMID: 30864832 DOI: 10.1259/bjr.20190020
    OBJECTIVE: To examine the imaging capability of a novel small field of view hybrid gamma camera (HGC) using 125I seeds prior to surgical use.

    METHODS: The imaging performance of the camera system was assessed quantitatively and qualitatively at different source depths, source to collimator distances (SCD), activity levels, acquisition times and source separations, utilising bespoke phantoms.

    RESULTS: The system sensitivity and spatial resolution of the HGC for 125I were 0.41 cps/MBq (at SCD 48 mm) and 1.53 ± 0.23 mm (at SCD 10 mm) respectively. The camera was able to detect the 125I seed at a SCD of 63 mm (with no scattering material in place) in images recorded within a 1-min acquisition time. The detection of the seeds beneath scattering material (simulating deep-seated tumours) was limited to depths of less than 20 mm beneath the skin surface with a SCD of 63 mm and seed activity of 2.43 MBq. Subjective assessments of the hybrid images acquired showed the capability of the HGC for localising the 125I seeds.

    CONCLUSION: This preliminary ex vivo study demonstrates that the HGC is capable of detecting 125I seeds and could be a useful tool in radioactive seed localisation with the added benefit of providing hybrid optical γ images for guiding breast conserving surgery.

    ADVANCES IN KNOWLEDGE: The SFOV HGC could provide high resolution fused optical-gamma images of 125I radioactive seeds indicating the potential use in intraoperative surgical procedure such as RSL.

    Matched MeSH terms: Iodine Radioisotopes/analysis*
  13. Olatunji MA, Khandaker MU, Nwankwo VUJ, Idris AM
    Radiat Environ Biophys, 2022 Nov;61(4):597-608.
    PMID: 36175773 DOI: 10.1007/s00411-022-00993-3
    Proper documentation of baseline radiation data of different environments is an important step toward adequate environmental monitoring, and it provides quick means to quantitatively check and determine possible radionuclide contamination by anthropogenic sources. Besides, such documentation is useful for decision making processes, assessment of dose rates to the public, epidemiological studies, and environmental regulations. This review summarizes the results of studies conducted on radioactivity in Nigerian environments. For most soil samples, the levels of radioactivity are well within the world averages of 33, 45, and 420 Bq kg-1 for 226Ra, 232Th and 40K, respectively. Other soil samples from regions such as Abeokuta in the southwest, and Jos in the northcentral have been described as high background radiation areas with radioactivity values comparable with those obtained from known high background radiation areas such as the Odisha (formerly Orissa) coast in India (with values reported as 350, 2,825, and 180 Bq kg-1 for 238U/226Ra, 232Th, and 40K, respectively). In some parts of Nigeria, surface and underground water sources used for drinking and other purposes also present elevated levels of 226Ra above the world range of 0.01 to 0.1 Bq l-1 and the tolerable levels recommended by the World Health Organization and U.S. Environmental Protection Agency. Corresponding radiation doses due to measured radioactivities from different environments were estimated and compared with those reported in similar studies around the world. More so, the human and environmental health hazards that might be associated with the reported radioactivity in different environmental settings are discussed. The present report is expected to support authorities in developing appropriate regulations to protect the public from radiation exposure arising from environmental radioactivity. The report also examines other areas of consideration for future studies to ensure adequate radiation monitoring in Nigeria.
    Matched MeSH terms: Potassium Radioisotopes/analysis
  14. Siraz MMM, Das SK, Mondol MS, Alam MS, Al Mahmud J, Rashid MB, et al.
    Environ Monit Assess, 2023 Apr 17;195(5):579.
    PMID: 37067680 DOI: 10.1007/s10661-023-11223-8
    Bangladesh is a rapidly developing country, which is vulnerable to various types of pollution due to the large-scale industrial and associated human activities that might potentially affect the locally harvested foodstuffs. Therefore, the transfer factor is an essential tool to assess the safety of foodstuffs due to the presence of natural radioactivity in environmental matrix and/or strata. This is a first study of its kind conducted in a well-known region for mango farming in Bangladesh, measuring the uptake of naturally occurring radioactive materials (NORMs) by grass and mango from soil to assess the ingestion doses to humans. The HPGe gamma-ray detector was used to determine the concentrations of NORMs in samples of soil (20), grass (10), and mango (10), which were then used to calculate the transfer factors of soil to grass and soil to mango. Average activity concentrations of 226Ra, 232Th, and 40K in associated soil samples (47.27 ± 4.10, 64.49 ± 4.32, 421.60 ± 28.85) of mango and 226Ra and 232Th in associated soil samples (45.07 ± 3.93, 52.17 ± 3.95) of grass were found to exceed the world average values. The average transfer factors (TFs) for mango were obtained in the order of 40K(0.80) > 226Ra (0.61) > 232Th (0.31), and for grass, it shows the order of 40K (0.78) > 232Th (0.64) > 226Ra (0.56). However, a few values (3 mango samples and 3 grass samples) of the estimated TFs exceeded the recommended limits. Moreover, Bangladesh lacks the transfer factors for most of the food crops; therefore, calculation of TFs in the major agricultural products is required all over Bangladesh, especially the foodstuffs produced near the Rooppur Nuclear Power Plant, which is scheduled to be commissioned in 2023.
    Matched MeSH terms: Radioisotopes/analysis
  15. Pradhoshini KP, Santhanabharathi B, Priyadharshini M, Ahmed MS, Murugan K, Sivaperumal P, et al.
    Environ Res, 2024 Mar 01;244:118000.
    PMID: 38128601 DOI: 10.1016/j.envres.2023.118000
    The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.
    Matched MeSH terms: Radioisotopes/analysis
  16. Walsh RP, Bidin K, Blake WH, Chappell NA, Clarke MA, Douglas I, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3340-53.
    PMID: 22006973 DOI: 10.1098/rstb.2011.0054
    Long-term (21-30 years) erosional responses of rainforest terrain in the Upper Segama catchment, Sabah, to selective logging are assessed at slope, small and large catchment scales. In the 0.44 km(2) Baru catchment, slope erosion measurements over 1990-2010 and sediment fingerprinting indicate that sediment sources 21 years after logging in 1989 are mainly road-linked, including fresh landslips and gullying of scars and toe deposits of 1994-1996 landslides. Analysis and modelling of 5-15 min stream-suspended sediment and discharge data demonstrate a reduction in storm-sediment response between 1996 and 2009, but not yet to pre-logging levels. An unmixing model using bed-sediment geochemical data indicates that 49 per cent of the 216 t km(-2) a(-1) 2009 sediment yield comes from 10 per cent of its area affected by road-linked landslides. Fallout (210)Pb and (137)Cs values from a lateral bench core indicate that sedimentation rates in the 721 km(2) Upper Segama catchment less than doubled with initially highly selective, low-slope logging in the 1980s, but rose 7-13 times when steep terrain was logged in 1992-1993 and 1999-2000. The need to keep steeplands under forest is emphasized if landsliding associated with current and predicted rises in extreme rainstorm magnitude-frequency is to be reduced in scale.
    Matched MeSH terms: Cesium Radioisotopes/analysis; Lead Radioisotopes/analysis
  17. Amrani D, Tahtat M
    Appl Radiat Isot, 2001 Apr;54(4):687-9.
    PMID: 11225705
    Samples of natural and manufactured building materials collected from Algiers have been analysed for 226Ra, 232Th and 40K using a high-resolution HPGe gamma-spectrometry system. The specific concentrations for 226Ra, 232Th and 40K, from the selected building materials, ranged from (12-65 Bq kg(-1)), (7-51 B qkg(-1)) and (36-675 Bq kg(-1)), respectively. The measured activity concentrations for these natural radionuclides were compared with the reported data of other countries and with the world average activity of soil. Radium-equivalent activities were calculated for the measured samples to assess the radiation hazards arising from using those materials in the construction of dwellings. All building materials showed Ra(eq) activities lower than the limit set in the OECD report (370 Bq kg(-1)), equivalent to external gamma-dose of 1.5 mSv yr(-1).
    Matched MeSH terms: Potassium Radioisotopes/analysis*; Thallium Radioisotopes/analysis*
  18. Dougherty G
    Health Phys, 1989 Jul;57(1):187-90.
    PMID: 2745081
    Matched MeSH terms: Cesium Radioisotopes/analysis*; Potassium Radioisotopes/analysis*
  19. Aliyu AS, Evangeliou N, Mousseau TA, Wu J, Ramli AT
    Environ Int, 2015 Dec;85:213-28.
    PMID: 26425805 DOI: 10.1016/j.envint.2015.09.020
    Since 2011, the scientific community has worked to identify the exact transport and deposition patterns of radionuclides released from the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan. Nevertheless, there still remain many unknowns concerning the health and environmental impacts of these radionuclides. The present paper reviews the current understanding of the FDNPP accident with respect to interactions of the released radionuclides with the environment and impacts on human and non-human biota. Here, we scrutinize existing literature and combine and interpret observations and modeling assessments derived after Fukushima. Finally, we discuss the behavior and applications of radionuclides that might be used as tracers of environmental processes. This review focuses on (137)Cs and (131)I releases derived from Fukushima. Published estimates suggest total release amounts of 12-36.7PBq of (137)Cs and 150-160PBq of (131)I. Maximum estimated human mortality due to the Fukushima nuclear accident is 10,000 (due to all causes) and the maximum estimates for lifetime cancer mortality and morbidity are 1500 and 1800, respectively. Studies of plants and animals in the forests of Fukushima have recorded a range of physiological, developmental, morphological, and behavioral consequences of exposure to radioactivity. Some of the effects observed in the exposed populations include the following: hematological aberrations in Fukushima monkeys; genetic, developmental and morphological aberrations in a butterfly; declines in abundances of birds, butterflies and cicadas; aberrant growth forms in trees; and morphological abnormalities in aphids. These findings are discussed from the perspective of conservation biology.
    Matched MeSH terms: Cesium Radioisotopes/analysis; Iodine Radioisotopes/analysis
  20. Arai T
    PLoS One, 2014;9(6):e100779.
    PMID: 24964195 DOI: 10.1371/journal.pone.0100779
    The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.
    Matched MeSH terms: Cesium Radioisotopes/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links