Displaying publications 1 - 20 of 98 in total

Abstract:
Sort:
  1. Mansor MS, Nor SM, Ramli R
    Behav Processes, 2020 Nov;180:104229.
    PMID: 32866554 DOI: 10.1016/j.beproc.2020.104229
    Mixed-species flocks (MSFs) serve important roles in bird communities, especially in tropical forests. Although structure of mixed-species bird flocks and its benefits has been intensively studied globally, the foraging plasticity of a species when joining MSFs has rarely been evaluated. The present study examines foraging strategies of the Rufous-crowned Babbler (Malacopteron magnum), Chestnut-winged Babbler (Cyanoderma erythropterum) and Black-naped Monarch (Hypothymis azurea) when participating in MSFs in the Krau Wildlife Reserve, central Peninsular Malaysia. These species exhibit active foraging shifts in utilisation of vertical strata, foraging substrate, attack manoeuvres and foliage density, when foraging in MSFs, compared to when foraging outside MSFs. While the Rufous-crowned Babbler and Chestnut-winged Babbler commonly used gleaning and stretching (to completely extend the legs or neck to reach the food items) manoeuvres when foraging outside MSFs, respectively, they adopted probing manoeuvre and frequently used higher strata upon joining MSFs. The Chestnut-winged Babbler tended to forage on the underside of leaves and the Black-naped Monarch frequently utilised branches when joining MSFs, while they exclusively used aerial leaf litter and live green leaves, respectively, when foraging with conspecifics. The monarch also adopted the hovering manoeuvre and frequently foraged within denser foliage cover when joining MSFs. This study demonstrated that flock members exhibits foraging plasticity either through an expansion or active shift in foraging niches when participating in MSFs, thus suggesting the occurrence of possible foraging improvement and/or reductions in predation risk.
    Matched MeSH terms: Rainforest*
  2. Senior RA, Hill JK, Benedick S, Edwards DP
    Glob Chang Biol, 2018 03;24(3):1267-1278.
    PMID: 29052295 DOI: 10.1111/gcb.13914
    Tropical rainforests are subject to extensive degradation by commercial selective logging. Despite pervasive changes to forest structure, selectively logged forests represent vital refugia for global biodiversity. The ability of these forests to buffer temperature-sensitive species from climate warming will be an important determinant of their future conservation value, although this topic remains largely unexplored. Thermal buffering potential is broadly determined by: (i) the difference between the "macroclimate" (climate at a local scale, m to ha) and the "microclimate" (climate at a fine-scale, mm to m, that is distinct from the macroclimate); (ii) thermal stability of microclimates (e.g. variation in daily temperatures); and (iii) the availability of microclimates to organisms. We compared these metrics in undisturbed primary forest and intensively logged forest on Borneo, using thermal images to capture cool microclimates on the surface of the forest floor, and information from dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences in forest structure remained 9-12 years after repeated selective logging, we found that logging activity had very little effect on thermal buffering, in terms of macroclimate and microclimate temperatures, and the overall availability of microclimates. For 1°C warming in the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly more in primary forest than in logged forest, but the effect amounted to <0.1°C difference between forest types. We therefore conclude that selectively logged forests are similar to primary forests in their potential for thermal buffering, and subsequent ability to retain temperature-sensitive species under climate change. Selectively logged forests can play a crucial role in the long-term maintenance of global biodiversity.
    Matched MeSH terms: Rainforest*
  3. Huaraca Huasco W, Riutta T, Girardin CAJ, Hancco Pacha F, Puma Vilca BL, Moore S, et al.
    Glob Chang Biol, 2021 08;27(15):3657-3680.
    PMID: 33982340 DOI: 10.1111/gcb.15677
    Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
    Matched MeSH terms: Rainforest*
  4. Bongalov B, Burslem DFRP, Jucker T, Thompson SED, Rosindell J, Swinfield T, et al.
    Ecol Lett, 2019 Oct;22(10):1608-1619.
    PMID: 31347263 DOI: 10.1111/ele.13357
    Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy β-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide β-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of β-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.
    Matched MeSH terms: Rainforest*
  5. Tang ACI, Stoy PC, Hirata R, Musin KK, Aeries EB, Wenceslaus J, et al.
    Sci Total Environ, 2019 Sep 15;683:166-174.
    PMID: 31132697 DOI: 10.1016/j.scitotenv.2019.05.217
    Tropical rainforests control the exchange of water and energy between the land surface and the atmosphere near the equator and thus play an important role in the global climate system. Measurements of latent (LE) and sensible heat exchange (H) have not been synthesized across global tropical rainforests to date, which can help place observations from individual tropical forests in a global context. We measured LE and H for four years in a tropical peat forest ecosystem in Sarawak, Malaysian Borneo using eddy covariance, and hypothesize that the study ecosystem will exhibit less seasonal variability in turbulent fluxes than other tropical ecosystems as soil water is not expected to be limiting in a tropical forested wetland. LE and H show little variability across seasons in the study ecosystem, with LE values on the order of 11 MJ m-2 day and H on the order of 3 MJ m-2 day-1. Annual evapotranspiration (ET) did not differ among years and averaged 1579 ± 47 mm year-1. LE exceeded characteristic values from other tropical rainforest ecosystems in the FLUXNET2015 database with the exception of GF-Guy near coastal French Guyana, which averaged 8-11 MJ m-2 day-1. The Bowen ratio (Bo) in tropical rainforests in the FLUXNET2015 database either exhibited little seasonal trend, one seasonal peak, or two peaks. Volumetric water content (VWC) and VPD explained a trivial amount of the variability of LE and Bo in some of the tropical rainforests including the study ecosystem, but were strong controls in others, suggesting differences in stomatal regulation and/or the partitioning between evaporation and transpiration. Results demonstrate important differences in the seasonal patterns in water and energy exchange across different tropical rainforest ecosystems that need to be understood to quantify how ongoing changes in tropical rainforest extent will impact the global climate system.
    Matched MeSH terms: Rainforest*
  6. Griffiths HM, Ashton LA, Evans TA, Parr CL, Eggleton P
    Curr Biol, 2019 02 18;29(4):R118-R119.
    PMID: 30779897 DOI: 10.1016/j.cub.2019.01.012
    Termite-mediated decomposition is an important, but often overlooked, component of the carbon cycle. Using a large-scale suppression experiment in Borneo, Griffiths et al. found that termites contribute between 58 and 64% of mass loss from dead wood.
    Matched MeSH terms: Rainforest*
  7. Senawi J, Kingston T
    J Exp Biol, 2019 12 03;222(Pt 23).
    PMID: 31704901 DOI: 10.1242/jeb.203950
    Differences in wing morphology are predicted to reflect differences in bat foraging strategies. Experimental tests of this prediction typically assess the relationship between wing morphology and a measures of flight performance on an obstacle course. However, studies have lacked measures of obstacle avoidance ability true scores, which may confound interpretation of ability across the range of presented tasks. Here, we used Rasch analysis of performance in a collision-avoidance experiment to estimate the ability of bat species to fly through vegetative clutter. We refer to this latent trait as 'clutter negotiating ability' and determined the relationships between clutter negotiating ability and wing morphology in 15 forest insectivorous bat species that forage in the densely cluttered rainforests of Malaysia. The clutter negotiating ability scores were quantified based on individual responses of each species to 11 different obstacle arrangements (four banks of vertical strings 10-60 cm apart). The tasks employed for the collision-avoidance experiment were reliable and valid, although Rasch analysis suggested that the experiment was too easy to discriminate completely among the 15 species. We found significant negative correlations between clutter negotiating ability and body mass, wingspan, wing loading and wing area but a positive significant correlation with wingtip area ratio. However, in stepwise multiple regression analyses, only body mass and wing loading were significant predictors of clutter negotiating ability. Species fell into clusters of different clutter negotiating ability, suggesting a potential mechanism for resource partitioning within the forest interior insectivorous ensemble.
    Matched MeSH terms: Rainforest*
  8. Ho A, Zuan ATK, Mendes LW, Lee HJ, Zulkeflee Z, van Dijk H, et al.
    Microb Ecol, 2022 Nov;84(4):1154-1165.
    PMID: 34716776 DOI: 10.1007/s00248-021-01908-3
    Oil palm (OP) plantations are gradually replacing tropical rainforest in Malaysia, one of the largest palm oil producers globally. Conversion of lands to OP plantations has been associated with compositional shifts of the microbial community, with consequences on the greenhouse gas (GHG) emissions. While the impact of the change in land use has recently been investigated for microorganisms involved in N2O emission, the response of the aerobic methanotrophs to OP agriculture remains to be determined. Here, we monitored the bacterial community composition, focusing on the aerobic methanotrophs, in OP agricultural soils since 2012, 2006, and 1993, as well as in a tropical rainforest, in 2019 and 2020. High-affinity methane uptake was confirmed, showing significantly lower rates in the OP plantations than in the tropical rainforest, but values increased with continuous OP agriculture. The bacterial, including the methanotrophic community composition, was modified with ongoing OP agriculture. The methanotrophic community composition was predominantly composed of unclassified methanotrophs, with the canonical (Methylocystis) and putative methanotrophs thought to catalyze high-affinity methane oxidation present at higher relative abundance in the oldest OP plantation. Results suggest that the methanotrophic community was relatively more stable within each site, exhibiting less temporal variations than the total bacterial community. Uncharacteristically, a 16S rRNA gene-based co-occurrence network analysis revealed a more complex and connected community in the OP agricultural soil, which may influence the resilience of the bacterial community to disturbances. Overall, we provide a first insight into the ecology and role of the aerobic methanotrophs as a methane sink in OP agricultural soils.
    Matched MeSH terms: Rainforest*
  9. Ng KKS, Kobayashi MJ, Fawcett JA, Hatakeyama M, Paape T, Ng CH, et al.
    Commun Biol, 2021 Oct 07;4(1):1166.
    PMID: 34620991 DOI: 10.1038/s42003-021-02682-1
    Hyperdiverse tropical rainforests, such as the aseasonal forests in Southeast Asia, are supported by high annual rainfall. Its canopy is dominated by the species-rich tree family of Dipterocarpaceae (Asian dipterocarps), which has both ecological (e.g., supports flora and fauna) and economical (e.g., timber production) importance. Recent ecological studies suggested that rare irregular drought events may be an environmental stress and signal for the tropical trees. We assembled the genome of a widespread but near threatened dipterocarp, Shorea leprosula, and analyzed the transcriptome sequences of ten dipterocarp species representing seven genera. Comparative genomic and molecular dating analyses suggested a whole-genome duplication close to the Cretaceous-Paleogene extinction event followed by the diversification of major dipterocarp lineages (i.e. Dipterocarpoideae). Interestingly, the retained duplicated genes were enriched for genes upregulated by no-irrigation treatment. These findings provide molecular support for the relevance of drought for tropical trees despite the lack of an annual dry season.
    Matched MeSH terms: Rainforest*
  10. Venkataraman VV, Kraft TS, Dominy NJ, Endicott KM
    Proc Natl Acad Sci U S A, 2017 03 21;114(12):3097-3102.
    PMID: 28265058 DOI: 10.1073/pnas.1617542114
    The residential mobility patterns of modern hunter-gatherers broadly reflect local resource availability, but the proximate ecological and social forces that determine the timing of camp movements are poorly known. We tested the hypothesis that the timing of such moves maximizes foraging efficiency as hunter-gatherers move across the landscape. The marginal value theorem predicts when a group should depart a camp and its associated foraging area and move to another based on declining marginal return rates. This influential model has yet to be directly applied in a population of hunter-gatherers, primarily because the shape of gain curves (cumulative resource acquisition through time) and travel times between patches have been difficult to estimate in ethnographic settings. We tested the predictions of the marginal value theorem in the context of hunter-gatherer residential mobility using historical foraging data from nomadic, socially egalitarian Batek hunter-gatherers (n = 93 d across 11 residential camps) living in the tropical rainforests of Peninsular Malaysia. We characterized the gain functions for all resources acquired by the Batek at daily timescales and examined how patterns of individual foraging related to the emergent property of residential movements. Patterns of camp residence times conformed well with the predictions of the marginal value theorem, indicating that communal perceptions of resource depletion are closely linked to collective movement decisions. Despite (and perhaps because of) a protracted process of deliberation and argument about when to depart camps, Batek residential mobility seems to maximize group-level foraging efficiency.
    Matched MeSH terms: Rainforest*
  11. Tan WS, Chang CY, Yin WF, Chan KG
    Genome Announc, 2015;3(1).
    PMID: 25635007 DOI: 10.1128/genomeA.01509-14
    Pantoea stewartii is known to be the causative agent of Stewart's wilt, which usually affects sweet corn (Zea mays) with the corn flea beetle as the transmission vector. In this work, we present the whole-genome sequence of Pantoea stewartii strain M009, isolated from a Malaysian tropical rainforest waterfall.
    Matched MeSH terms: Rainforest
  12. Tan WS, Yin WF, Chan KG
    Genome Announc, 2015;3(1).
    PMID: 25555739 DOI: 10.1128/genomeA.01372-14
    Aeromonas hydrophila species can be found in warm climates and can survive in different environments. They possess the ability to communicate within their populations, which is known as quorum sensing. In this work, we present the draft genome sequence of A. hydrophila M013, a bacterium isolated from a Malaysian tropical rainforest waterfall.
    Matched MeSH terms: Rainforest
  13. Plotkin JB, Chave J, Ashton PS
    Am Nat, 2002 Nov;160(5):629-44.
    PMID: 18707513 DOI: 10.1086/342823
    Tree species in tropical rain forests exhibit a rich panoply of spatial patterns that beg ecological explanation. The analysis of tropical census data typically relies on spatial statistics, which quantify the average aggregation tendency of a species. In this article we develop a cluster-based approach that complements traditional spatial statistics in the exploration and analysis of ecological hypotheses for spatial pattern. We apply this technique to six study species within a fully mapped 50-ha forest census in peninsular Malaysia. For each species we identify the scale(s) of spatial aggregation and the corresponding tree clusters. We study the correlation between cluster locations and abiotic variables such as topography. We find that the distribution of cluster sizes exhibits equilibrium and nonequilibrium behavior depending on species life history. The distribution of tree diameters within clusters also varies according to species life history. At different spatial scales, we find evidence for both niche-based and dispersal-limited processes producing spatial pattern. Our methodology for identifying scales of aggregation and clusters is general; we discuss the method's applicability to spatial problems outside of tropical plant ecology.
    Matched MeSH terms: Rainforest
  14. Gustafsson M, Gustafsson L, Alloysius D, Falck J, Yap S, Karlsson A, et al.
    Data Brief, 2016 Mar;6:466-70.
    PMID: 26900591 DOI: 10.1016/j.dib.2015.12.048
    The data presented in this paper is supporting the research article "Life history traits predict the response to increased light among 33 tropical rainforest tree species" [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment.
    Matched MeSH terms: Rainforest
  15. Cannon CH, Peart DR, Leighton M
    Science, 1998 Aug 28;281(5381):1366-8.
    PMID: 9721105
    The effects of commercial logging on tree diversity in tropical rainforest are largely unknown. In this study, selectively logged tropical rainforest in Indonesian Borneo is shown to contain high tree species richness, despite severe structural damage. Plots logged 8 years before sampling contained fewer species of trees greater than 20 centimeters in diameter than did similar-sized unlogged plots. However, in samples of the same numbers of trees (requiring a 50 percent larger area), logged forest contained as many tree species as unlogged forest. These findings warrant reassessment of the conservation potential of large tracts of commercially logged tropical rainforest.
    Matched MeSH terms: Rainforest
  16. Kiew R, Lim CL
    PhytoKeys, 2019;131:1-26.
    PMID: 31537960 DOI: 10.3897/phytokeys.131.35944
    Of the 92 Codonoboea species that occur in Peninsular Malaysia, 20 are recorded from the state of Terengganu, of which 9 are endemic to Terengganu including three new species, C. norakhirrudiniana Kiew, C. rheophytica Kiew and C. sallehuddiniana C.L.Lim, that are here described and illustrated. A key and checklist to all the Terengganu species are provided. The majority of species grow in lowland rain forest, amongst which C. densifolia and C. rheophytica are rheophytic. Only four grow in montane forest. The flora of Terengganu is still incompletely known, especially in the northern part of the state and in mountainous areas and so, with botanical exploration, more new species can be expected in this speciose genus.
    Matched MeSH terms: Rainforest
  17. Karin BR, Freitas ES, Shonleben S, Grismer LL, Bauer AM, Das I
    Zootaxa, 2018 Jan 12;4370(4):345-362.
    PMID: 29689833 DOI: 10.11646/zootaxa.4370.4.2
    We collected two specimens of an undescribed species of Lygosoma from pitfall traps in an urban rainforest in Kuching and from the base of a forested hill in western Sarawak, East Malaysia. The new species is diagnosable from all south-east Asian congeners by morphological characters, and most closely resembles Lygosoma herberti from the Thai-Malay Peninsula. The new species shows substantial molecular divergence from its closest relatives in two protein-coding genes, one mitochondrial (ND1) and one nuclear (R35) that we sequenced for several south-east Asian congeners. We describe the new species on the basis of this distinct morphology and genetic divergence. It is the third species of Lygosoma known from Borneo, and highlights the continuing rise in lizard species diversity on the island. In addition, the discovery of this species from a small urban rainforest underscores the importance of preserving intact rainforest areas of any size in maintaining species diversity.
    Matched MeSH terms: Rainforest
  18. Nelson BR, David G, Mokhtar AF, Mamat MA, Rahman AJA
    Data Brief, 2018 Dec;21:2633-2637.
    PMID: 30761345 DOI: 10.1016/j.dib.2018.11.119
    This data article is constructed using avian (bird) counts from a recently identified trail in Kenyir rainforest, East Peninsular Malaysia. Avian chirps and naked eye visual were simultaneously used to locate the birds. After visual binocular and digital image inspection, identification of avian species were carried out using reference books. Data tabulation are divided by monsoon seasons and months before interpret using Shannon and Evenness indices. The highlights like feeding guilds, nativity, iconic species and statuses in the wild are presented with the data to increase its value. Within these, a total of 457 avian individuals from 36 avian family groups were recorded from which, 25 of these avian species occur as near threatened, vulnerable, endangered and critically endangered in the wild. Having these, the tabulated data becomes a calendar for seasonal availability of avian species which considers the 1.0 km trail suitable for bird watching, scientific study and ecotourism purposes.
    Matched MeSH terms: Rainforest
  19. Veryard R, Wu J, O'Brien MJ, Anthony R, Both S, Burslem DFRP, et al.
    Sci Adv, 2023 Sep 15;9(37):eadf0938.
    PMID: 37713486 DOI: 10.1126/sciadv.adf0938
    Experiments under controlled conditions have established that ecosystem functioning is generally positively related to levels of biodiversity, but it is unclear how widespread these effects are in real-world settings and whether they can be harnessed for ecosystem restoration. We used remote-sensing data from the first decade of a long-term, field-scale tropical restoration experiment initiated in 2002 to test how the diversity of planted trees affected recovery of a 500-ha area of selectively logged forest measured using multiple sources of satellite data. Replanting using species-rich mixtures of tree seedlings with higher phylogenetic and functional diversity accelerated restoration of remotely sensed estimates of aboveground biomass, canopy cover, and leaf area index. Our results are consistent with a positive relationship between biodiversity and ecosystem functioning in the lowland dipterocarp rainforests of SE Asia and demonstrate that using diverse mixtures of species can enhance their initial recovery after logging.
    Matched MeSH terms: Rainforest
  20. Husin MZ, Rajpar MN
    J Environ Biol, 2015 Jan;36 Spec No:121-7.
    PMID: 26591891
    The effects of logging and recovery process on avian richness and diversity was compared in recently logged and thirty year post-harvested hill dipterocarp tropical rainforest, using mist-netting method. Atotal of 803 bird individuals representing 86 bird species and 29 families (i.e., 37.90% from recently logged forest and 62.10% from thirty year post-harvested forest) were captured from October 2010 to September, 2012. Twenty one bird species were commonly captured from both types of forests, 37 bird species were caught only in thirty year post-harvested forest and 28 bird species were caught only from recently logged forest. Arachnothera longirostra--Little Spiderhunter, Malacopteron magnum--Rufous-crowned Babbler, Alophoixus phaeocephalus -Yellow-bellied Bulbul and Meiglyptes tukki--Buff-necked Woodpecker were the most abundant four bird species in the thirty year post-harvested forest. On the contrary, seven bird species, i.e., Trichastoma rostratum - White-chested Babbler, Lacedo pulchella - Banded Kingfisher, Picus miniaceus--Banded Woodpecker, Enicurus ruficapillus - Chestnut-naped Forktail, Anthreptes simplex--Plain Sunbird, Muscicapella hodgsoni--Pygmy Blue Flycatcher and Otus rufescens--Reddish Scope Owl were considered as the rarest (i.e., each represented only 0.12%). Likewise, A. longirostra, Pycnonotus eythropthalmos - Spectacled Bulbul, P. simplex--Cream-vented Bulbul and Merops viridis--Blue-throated Bee-eater were the most dominant and Copsychus malabaricus--White-rumped Shama Eurylaimus javanicus--Banded Broadbill /xos malaccensis - Streaked Bulbul and Harpactes diardii--Diard's Trogon (each 0.12%) were the rarest bird species in recently logged forest. CAP analysis indicated that avian species in thirty year post-harvested forest were more diverse and evenly distributed than recently logged forest. However, recently logged forest was rich in bird species than thirty year post- harvested forest. The results revealed that logging and retrieval process affect bird species richness and diversity. However, bird species may respond differently from habitat to habitat, i.e., forest logging causes disturbance of some avian species while recovery process may replace the loss of vegetation and harbour a wide array of avian species richness and diversity.
    Matched MeSH terms: Rainforest*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links