METHODS: From bioinformatics data, mismatched mouse amino acids in variable light and heavy chain amphipathic regions were identified and substituted with those common to human antibody framework. Appropriate synthetic DNA sequences inserted into vectors were transfected into HEK293 cells to produce the humanized antibody.
RESULTS: Humanized antibodies showed specific binding to CD20 and greater cytotoxicity to cancer WIL2-NS cell proliferation than rituximab in vitro.
CONCLUSION: A humanized version of rituximab with potential to be developed into a biobetter for treatment of B-cell disorders has been successfully generated using a logical and bioinformatics approach.
RESULTS: Expression of TB antigen-LysM fusion genes was conducted in Escherichia coli, but this resulted in IBs deposition in contrast to the expression of TB antigens only. This suggested that LysM fusion significantly altered solubility of the TB antigens produced in E. coli. The non-denaturing NLS technique was used and optimized to successfully solubilize and purify ~ 55% of the recombinant cell wall-anchoring TB antigen from the IBs. Functionality of the recovered protein was analyzed via immunofluorescence microscopy and whole cell ELISA which showed successful and stable cell wall binding to L. plantarum (up to 5 days).
CONCLUSION: The presented NLS purification strategy enables an efficient and rapid method for obtaining higher yields of soluble cell wall-anchoring Mycobacterium tuberculosis antigens-LysM fusion proteins from IBs in E. coli.