Displaying all 3 publications

Abstract:
Sort:
  1. Nik Ramli NN, Omar N, Husin A, Ismail Z, Siran R
    Neurosci Lett, 2015 Feb 19;588:137-41.
    PMID: 25562631 DOI: 10.1016/j.neulet.2014.12.062
    Glutamate receptors are the integral cellular components associated with excitotoxicity mechanism induced by the ischemic cascade events. Therefore the glutamate receptors have become the major molecular targets of neuroprotective agents in stroke researches. Recent studies have demonstrated that a Group I metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) preconditioning elicits neuroprotection in the hippocampal slice cultures exposed to toxic level of N-methyl-d-aspartate (NMDA). We further investigated the preconditioning effects of (S)-3,5-DHPG on acute ischemic stroke rats. One 10 or 100μM of (S)-3,5-DHPG was administered intrathecally to Sprague-Dawley adult male rats, 2h prior to induction of acute ischemic stroke by middle cerebral artery occlusion (MCAO). After 24h, neurological deficits were evaluated by modified stroke severity scores and grid-walking test. All rats were sacrificed and infarct volumes were determined by 2,3,5-triphenyltetrazolium chloride staining. The serum level of neuron-specific enolase (NSE) of each rat was analyzed by enzyme-linked immunosorbent assay (ELISA). One and 10μM of (S)-3,5-DHPG preconditioning in the stroke rats showed significant improvements in motor impairment (P<0.01), reduction in the infarct volume (P<0.01) and reduction in the NSE serum level (P<0.01) compared to the control stroke rats. We conclude that 1 and 10μM (S)-3,5-DHPG preconditioning induced protective effects against acute ischemic insult in vivo.
    Matched MeSH terms: Resorcinols/therapeutic use*
  2. How KN, Lim PY, Wan Ahmad Kammal WSL, Shamsudin N
    Int J Dermatol, 2020 Jul;59(7):804-812.
    PMID: 32447767 DOI: 10.1111/ijd.14948
    OBJECTIVE: Antibiotics and retinoids have been used for acne vulgaris for decades. Though effective, each has its own drawbacks. Chemical peels have been used for treatment of acne vulgaris with inadequate clinical evidence. We sought to determine the efficacy and safety of Jessner's solution (JS) in comparison with salicylic acid (SA) 30% in the management of acne vulgaris and postacne hyperpigmentation in patients with colored skin.

    METHODS: A total of 36 subjects (94.5% Fitzpatick Type IV-V) were recruited in this randomized double-blinded, split-face, controlled trial. Each side of the face was randomly assigned for treatment with either JS or SA. Subjects were treated once fortnightly for a total of three sessions. Lesion counting, Michaelsson acne score (MAS), photographs, and postacne hyperpigmentation index (PAHPI) were used to objectively assess the improvement. Complications were assessed during each visit. Statistical analysis was conducted using SPSS v22.0. Significance was set at P = 0.05.

    RESULTS: At the end of therapy, significant reduction in inflammatory, noninflammatory lesions, MAS, and PAHPI scores (P 

    Matched MeSH terms: Resorcinols/therapeutic use*
  3. Shu YH, Yuan HH, Xu MT, Hong YT, Gao CC, Wu ZP, et al.
    Acta Pharmacol Sin, 2021 May;42(5):780-790.
    PMID: 32814819 DOI: 10.1038/s41401-020-0492-5
    Guangsangon E (GSE) is a novel Diels-Alder adduct isolated from leaves of Morus alba L, a traditional Chinese medicine widely applied in respiratory diseases. It is reported that GSE has cytotoxic effect on cancer cells. In our research, we investigated its anticancer effect on respiratory cancer and revealed that GSE induces autophagy and apoptosis in lung and nasopharyngeal cancer cells. We first observed that GSE inhibits cell proliferation and induces apoptosis in A549 and CNE1 cells. Meanwhile, the upregulation of autophagosome marker LC3 and increased formation of GFP-LC3 puncta demonstrates the induction of autophagy in GSE-treated cells. Moreover, GSE increases the autophagy flux by enhancing lysosomal activity and the fusion of autophagosomes and lysosomes. Next, we investigated that endoplasmic reticulum (ER) stress is involved in autophagy induction by GSE. GSE activates the ER stress through reactive oxygen species (ROS) accumulation, which can be blocked by ROS scavenger NAC. Finally, inhibition of autophagy attenuates GSE-caused cell death, termed as "autophagy-mediated cell death." Taken together, we revealed the molecular mechanism of GSE against respiratory cancer, which demonstrates great potential of GSE in the treatment of representative cancer.
    Matched MeSH terms: Resorcinols/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links