Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Tai ELM, Kueh YC, Wan Hitam WH, Wong TY, Shatriah I
    PLoS One, 2018;13(2):e0191434.
    PMID: 29389952 DOI: 10.1371/journal.pone.0191434
    PURPOSE: Childhood obesity is associated with adult cardiometabolic disease. We postulate that the underlying microvascular dysfunction begins in childhood. We thus aimed to compare retinal vascular parameters between obese and non-obese children.

    METHODS: This was a cross-sectional study involving 166 children aged 6 to 12 years old in Malaysia. Ocular examination, biometry, retinal photography, blood pressure and body mass index measurement were performed. Participants were divided into two groups; obese and non-obese. Retinal vascular parameters were measured using validated software.

    RESULTS: Mean age was 9.58 years. Approximately 51.2% were obese. Obese children had significantly narrower retinal arteriolar caliber (F(1,159) = 6.862, p = 0.010), lower arteriovenous ratio (F(1,159) = 17.412, p < 0.001), higher venular fractal dimension (F(1,159) = 4.313, p = 0.039) and higher venular curvature tortuosity (F(1,158) = 5.166, p = 0.024) than non-obese children, after adjustment for age, gender, blood pressure and axial length.

    CONCLUSIONS: Obese children have abnormal retinal vascular geometry. These findings suggest that childhood obesity is characterized by early microvascular abnormalities that precede development of overt disease. Further research is warranted to determine if these parameters represent viable biomarkers for risk stratification in obesity.

    Matched MeSH terms: Retinal Vessels/anatomy & histology*; Retinal Vessels/pathology
  2. Azemin MZ, Daud NM, Ab Hamid F, Zahari I, Sapuan AH
    ScientificWorldJournal, 2014;2014:783525.
    PMID: 25371914 DOI: 10.1155/2014/783525
    The aim of this study was to compare the retinal vasculature complexity between emmetropia, and myopia in younger subjects.
    Matched MeSH terms: Retinal Vessels/physiopathology*
  3. Reza AW, Eswaran C, Hati S
    J Med Syst, 2008 Apr;32(2):147-55.
    PMID: 18461818
    Blood vessel detection in retinal images is a fundamental step for feature extraction and interpretation of image content. This paper proposes a novel computational paradigm for detection of blood vessels in fundus images based on RGB components and quadtree decomposition. The proposed algorithm employs median filtering, quadtree decomposition, post filtration of detected edges, and morphological reconstruction on retinal images. The application of preprocessing algorithm helps in enhancing the image to make it better fit for the subsequent analysis and it is a vital phase before decomposing the image. Quadtree decomposition provides information on the different types of blocks and intensities of the pixels within the blocks. The post filtration and morphological reconstruction assist in filling the edges of the blood vessels and removing the false alarms and unwanted objects from the background, while restoring the original shape of the connected vessels. The proposed method which makes use of the three color components (RGB) is tested on various images of publicly available database. The results are compared with those obtained by other known methods as well as with the results obtained by using the proposed method with the green color component only. It is shown that the proposed method can yield true positive fraction values as high as 0.77, which are comparable to or somewhat higher than the results obtained by other known methods. It is also shown that the effect of noise can be reduced if the proposed method is implemented using only the green color component.
    Matched MeSH terms: Retinal Vessels/physiopathology*
  4. Cheung CY, Tay WT, Mitchell P, Wang JJ, Hsu W, Lee ML, et al.
    J Hypertens, 2011 Jul;29(7):1380-91.
    PMID: 21558958 DOI: 10.1097/HJH.0b013e328347266c
    The present study examined the effects of blood pressure on a spectrum of quantitative and qualitative retinal microvascular signs.
    Matched MeSH terms: Retinal Vessels/physiology*
  5. Tai EL, Li LJ, Wan-Hazabbah WH, Wong TY, Shatriah I
    PLoS One, 2017;12(1):e0170014.
    PMID: 28107389 DOI: 10.1371/journal.pone.0170014
    PURPOSE: Retinal vessel analysis is affected by both systemic and ocular factors. Malays are the major ethnicity in South East Asia. Data on the retinal microvasculature in Malays is limited, especially among children. We aim to evaluate the influence of ocular biometry on retinal vessel parameters in young Malay girls.

    METHODS: This was a cross-sectional, hospital-based study involving 86 Malay girls aged 6 to 12 years old in Hospital Universiti Sains Malaysia from 2015-2016. Ocular examination, refraction, biometry, retinal photography, and anthropometric measurements were performed. The central retinal arteriolar equivalent (CRAE), central retinal venular equivalent (CRVE) and overall fractal dimension (Df) were measured using validated computer-based methods (Singapore I vessel analyzer, SIVA version 3.0, Singapore). The associations of ocular biometry and CRAE, CRVE and Df were analyzed using multivariable analysis.

    RESULTS: The mean CRAE, CRVE and Df in Malay girls were 171.40 (14.40) um, 248.02 (16.95) um and 1.42 (0.05) respectively. Each 1 mm increase in axial length was associated with a reduction of 4.25 um in the CRAE (p = 0.03) and a reduction of 0.02 in the Df (p = 0.02), after adjustment for age, blood pressure and body mass index. No association was observed between axial length and CRVE. Anterior chamber depth and corneal curvature had no association with CRAE, CRVE or Df.

    CONCLUSION: Axial length affects retinal vessel measurements. Narrower retinal arterioles and reduced retinal fractal dimension were observed in Malay girls with longer axial lengths.

    Matched MeSH terms: Retinal Vessels/anatomy & histology*
  6. Cheng RW, Yusof F, Tsui E, Jong M, Duffin J, Flanagan JG, et al.
    J Physiol, 2016 Feb 01;594(3):625-40.
    PMID: 26607393 DOI: 10.1113/JP271182
    KEY POINTS: Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid-point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a PETCO2 of 32-37 mmHg but being limited below this threshold. Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end-tidal partial pressure of oxygen (PETCO2) ranging from 40-500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and PaO2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content for all stages of hypoxia used in the present study but can no longer compensate below a PETCO2 of 32-37 mmHg. These vessels have a great vascular range of adjustment, increasing diameter (8.5% arteriolar and 21% total venous area) with hypoxia (40 mmHg P ETC O2; P < 0.001) and decreasing diameter (6.9% arteriolar and 23% total venous area) with hyperoxia (500 mmHg PETCO2; P < 0.001) to the same extent. This indicates that the resting tonus is near the mid-point of the adjustment ranges at resting PaO2 where sensitivity is maximum.
    Matched MeSH terms: Retinal Vessels/physiology*
  7. Jeganathan VS, Sabanayagam C, Tai ES, Lee J, Sun C, Kawasaki R, et al.
    Hypertens Res, 2009 Nov;32(11):975-82.
    PMID: 19713968 DOI: 10.1038/hr.2009.130
    Blood pressure has a significant effect on retinal arterioles. There are few data on whether this effect varies by race/ethnicity. We examined the relationship of blood pressure and retinal vascular caliber in a multi-ethnic Asian population. The study is population-based and cross sectional in design. A total of 3749 Chinese, Malay and Indian participants aged > or =24 years residing in Singapore were included in the study. Retinal vascular caliber was measured using a computer program from digital retinal photographs. The associations of retinal vascular caliber with blood pressure and hypertension in each racial/ethnic group were analyzed. The main outcome measures are retinal arteriolar caliber and venular caliber. The results show that retinal arterioles were narrower in persons with uncontrolled/untreated hypertension (140.0 microm) as compared with persons with controlled hypertension (142.1 microm, P=0.0001) and those with no hypertension (146.0 microm, P<0.0001). On controlling for age, gender, body mass index, lipids and smoking, each 10 mm Hg increase in mean arterial blood pressure was associated with a 3.1 microm decrease in arteriolar caliber (P<0.0001), with a similar magnitude seen in all three racial/ethnic groups: 3.1 microm in Chinese, 2.8 microm in Malays and 3.2 microm in Indians (P<0.0001 for all). Each 10 mm Hg increase in mean arterial blood pressure was associated with a 1.8 microm increase in venular caliber (P<0.0001); furthermore, the magnitude of this effect was similar across the three racial/ethnic groups. The effect of blood pressure on the retinal vasculature was similar across three major racial/ethnic groups in Asia.
    Matched MeSH terms: Retinal Vessels/anatomy & histology; Retinal Vessels/physiology*
  8. Che Azemin MZ, Ab Hamid F, Aminuddin A, Wang JJ, Kawasaki R, Kumar DK
    Exp Eye Res, 2013 Nov;116:355-358.
    PMID: 24512773 DOI: 10.1016/j.exer.2013.10.010
    The fractal dimension is a global measure of complexity and is useful for quantifying anatomical structures, including the retinal vascular network. A previous study found a linear declining trend with aging on the retinal vascular fractal dimension (DF); however, it was limited to the older population (49 years and older). This study aimed to investigate the possible models of the fractal dimension changes from young to old subjects (10-73 years). A total of 215 right-eye retinal samples, including those of 119 (55%) women and 96 (45%) men, were selected. The retinal vessels were segmented using computer-assisted software, and non-vessel fragments were deleted. The fractal dimension was measured based on the log-log plot of the number of grids versus the size. The retinal vascular DF was analyzed to determine changes with increasing age. Finally, the data were fitted to three polynomial models. All three models are statistically significant (Linear: R2 = 0.1270, 213 d.f., p 
    Matched MeSH terms: Retinal Vessels
  9. Tayyari F, Yusof F, Vymyslicky M, Tan O, Huang D, Flanagan JG, et al.
    Invest Ophthalmol Vis Sci, 2014 Dec;55(12):7716-25.
    PMID: 25335983 DOI: 10.1167/iovs.14-14430
    The purpose of this study was to determine the within-session variability and between-session repeatability of spectral Fourier-domain optical coherence tomography (Doppler FD-OCT) Doppler retinal blood flow measurements in young and elderly subjects.
    Matched MeSH terms: Retinal Vessels/physiology*
  10. Aliahmad B, Kumar DK, Hao H, Unnikrishnan P, Che Azemin MZ, Kawasaki R, et al.
    ScientificWorldJournal, 2014;2014:467462.
    PMID: 25485298 DOI: 10.1155/2014/467462
    Fractal dimensions (FDs) are frequently used for summarizing the complexity of retinal vascular. However, previous techniques on this topic were not zone specific. A new methodology to measure FD of a specific zone in retinal images has been developed and tested as a marker for stroke prediction. Higuchi's fractal dimension was measured in circumferential direction (FDC) with respect to optic disk (OD), in three concentric regions between OD boundary and 1.5 OD diameter from its margin. The significance of its association with future episode of stroke event was tested using the Blue Mountain Eye Study (BMES) database and compared against spectrum fractal dimension (SFD) and box-counting (BC) dimension. Kruskal-Wallis analysis revealed FDC as a better predictor of stroke (H = 5.80, P = 0.016, α = 0.05) compared with SFD (H = 0.51, P = 0.475, α = 0.05) and BC (H = 0.41, P = 0.520, α = 0.05) with overall lower median value for the cases compared to the control group. This work has shown that there is a significant association between zone specific FDC of eye fundus images with future episode of stroke while this difference is not significant when other FD methods are employed.
    Matched MeSH terms: Retinal Vessels/pathology
  11. Saleh MD, Eswaran C, Mueen A
    J Digit Imaging, 2011 Aug;24(4):564-72.
    PMID: 20524139 DOI: 10.1007/s10278-010-9302-9
    This paper focuses on the detection of retinal blood vessels which play a vital role in reducing the proliferative diabetic retinopathy and for preventing the loss of visual capability. The proposed algorithm which takes advantage of the powerful preprocessing techniques such as the contrast enhancement and thresholding offers an automated segmentation procedure for retinal blood vessels. To evaluate the performance of the new algorithm, experiments are conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm performs better than the other known algorithms in terms of accuracy. Furthermore, the proposed algorithm being simple and easy to implement, is best suited for fast processing applications.
    Matched MeSH terms: Retinal Vessels/anatomy & histology*
  12. Reza AW, Eswaran C
    J Med Syst, 2011 Feb;35(1):17-24.
    PMID: 20703589 DOI: 10.1007/s10916-009-9337-y
    The increasing number of diabetic retinopathy (DR) cases world wide demands the development of an automated decision support system for quick and cost-effective screening of DR. We present an automatic screening system for detecting the early stage of DR, which is known as non-proliferative diabetic retinopathy (NPDR). The proposed system involves processing of fundus images for extraction of abnormal signs, such as hard exudates, cotton wool spots, and large plaque of hard exudates. A rule based classifier is used for classifying the DR into two classes, namely, normal and abnormal. The abnormal NPDR is further classified into three levels, namely, mild, moderate, and severe. To evaluate the performance of the proposed decision support framework, the algorithms have been tested on the images of STARE database. The results obtained from this study show that the proposed system can detect the bright lesions with an average accuracy of about 97%. The study further shows promising results in classifying the bright lesions correctly according to NPDR severity levels.
    Matched MeSH terms: Retinal Vessels/pathology*
  13. Ahmad Fadzil MH, Izhar LI, Venkatachalam PA, Karunakar TV
    J Med Eng Technol, 2007 Nov-Dec;31(6):435-42.
    PMID: 17994417 DOI: 10.1080/03091900601111201
    Information about retinal vasculature morphology is used in grading the severity and progression of diabetic retinopathy. An image analysis system can help ophthalmologists make accurate and efficient diagnoses. This paper presents the development of an image processing algorithm for detecting and reconstructing retinal vasculature. The detection of the vascular structure is achieved by image enhancement using contrast limited adaptive histogram equalization followed by the extraction of the vessels using bottom-hat morphological transformation. For reconstruction of the complete retinal vasculature, a region growing technique based on first-order Gaussian derivative is developed. The technique incorporates both gradient magnitude change and average intensity as the homogeneity criteria that enable the process to adapt to intensity changes and intensity spread over the vasculature region. The reconstruction technique reduces the required number of seeds to near optimal for the region growing process. It also overcomes poor performance of current seed-based methods, especially with low and inconsistent contrast images as normally seen in vasculature regions of fundus images. Simulations of the algorithm on 20 test images from the DRIVE database show that it outperforms many other published methods and achieved an accuracy range (ability to detect both vessel and non-vessel pixels) of 0.91 - 0.95, a sensitivity range (ability to detect vessel pixels) of 0.91 - 0.95 and a specificity range (ability to detect non-vessel pixels) of 0.88 - 0.94.
    Matched MeSH terms: Retinal Vessels/anatomy & histology*
  14. Lim CW, Cheng J, Tay ELT, Teo HY, Wong EPY, Yong VKY, et al.
    BMC Ophthalmol, 2018 Dec 10;18(1):315.
    PMID: 30526537 DOI: 10.1186/s12886-018-0976-y
    BACKGROUND: Despite the potential usefulness of optical coherence tomography angiography in retinal and optic disc conditions, the reliability of the imaging modality remains unclear. This study set out to measure the microvascular density of macula and optic disc by mean of optical coherence tomography angiography and report the repeatability of the vessel density measurements.

    METHODS: Cross sectional observational cohort study. Subjects with normal eyes were recruited. Two sets of optical coherence tomography angiography images of macula and optic nerve head were acquired during one visit. Novel in-house developed software was used to count the pixels in each images and to compute the microvessel density of the macula and optic disc. Data were analysed to determine the measurement repeatability.

    RESULTS: A total of 176 eyes from 88 consecutive normal subjects were recruited. For macular images, the mean vessel density at superficial retina, deep retina, outer retina and choriocapillaries segment was OD 0.113 and OS 0.111, OD 0.239 and OS 0.230, OD 0.179 and OS 0.164, OD 0.237 and OS 0.215 respectively. For optic disc images, mean vessel density at vitreoretinal interface, radial peripapillary capillary, superficial nerve head and disc segment at the level of choroid were OD 0.084 and OS 0.085, OD 0.140 and OS 0.138, OD 0.216 and OS 0.209, OD 0.227 and OS 0.236 respectively. The measurement repeatability tests showed that the coefficient of variation of macular scans, for right and left eyes, ranged from 6.4 to 31.1% and 5.3 to 59.4%. Likewise, the coefficient of variation of optic disc scans, for right and left eyes, ranged from 14.3 to 77.4% and 13.5 to 75.3%.

    CONCLUSIONS: Optical coherence tomography angiography is a useful modality to visualise the microvasculature plexus of macula and optic nerve head. The vessel density measurement of macular scan by mean of optical coherence tomography angiography demonstrated good repeatability. The optic disc scan, on the other hand, showed a higher coefficient of variation indicating a lower measurement repeatability than macular scan. Interpretation of optical coherence tomography angiography should take into account test-retest repeatability of the imaging system.

    TRIAL REGISTRATION: National Healthcare Group Domain Specific Review Board ( NHG DSRB ) Singapore. DSRB Reference: 2015/00301.

    Matched MeSH terms: Retinal Vessels/cytology*
  15. Shah SAA, Tang TB, Faye I, Laude A
    Graefes Arch Clin Exp Ophthalmol, 2017 Aug;255(8):1525-1533.
    PMID: 28474130 DOI: 10.1007/s00417-017-3677-y
    PURPOSE: To propose a new algorithm of blood vessel segmentation based on regional and Hessian features for image analysis in retinal abnormality diagnosis.

    METHODS: Firstly, color fundus images from the publicly available database DRIVE were converted from RGB to grayscale. To enhance the contrast of the dark objects (blood vessels) against the background, the dot product of the grayscale image with itself was generated. To rectify the variation in contrast, we used a 5 × 5 window filter on each pixel. Based on 5 regional features, 1 intensity feature and 2 Hessian features per scale using 9 scales, we extracted a total of 24 features. A linear minimum squared error (LMSE) classifier was trained to classify each pixel into a vessel or non-vessel pixel.

    RESULTS: The DRIVE dataset provided 20 training and 20 test color fundus images. The proposed algorithm achieves a sensitivity of 72.05% with 94.79% accuracy.

    CONCLUSIONS: Our proposed algorithm achieved higher accuracy (0.9206) at the peripapillary region, where the ocular manifestations in the microvasculature due to glaucoma, central retinal vein occlusion, etc. are most obvious. This supports the proposed algorithm as a strong candidate for automated vessel segmentation.

    Matched MeSH terms: Retinal Vessels/pathology*
  16. Ab Hamid F, Che Azemin MZ, Salam A, Aminuddin A, Mohd Daud N, Zahari I
    Curr Eye Res, 2016 Jun;41(6):823-31.
    PMID: 26268475 DOI: 10.3109/02713683.2015.1056375
    PURPOSE: The goal of this study was to provide the empirical evidence of fractal dimension as an indirect measure of retinal vasculature density.

    MATERIALS AND METHODS: Two hundred retinal samples of right eye [57.0% females (n = 114) and 43.0% males (n = 86)] were selected from baseline visit. A custom-written software was used for vessel segmentation. Vessel segmentation is the process of transforming two-dimensional color images into binary images (i.e. black and white pixels). The circular area of approximately 2.6 optic disc radii surrounding the center of optic disc was cropped. The non-vessels fragments were removed. FracLac was used to measure the fractal dimension and vessel density of retinal vessels.

    RESULTS: This study suggested that 14.1% of the region of interest (i.e. approximately 2.6 optic disk radii) comprised retinal vessel structure. Using correlation analysis, vessel density measurement and fractal dimension estimation are linearly and strongly correlated (R = 0.942, R(2) = 0.89, p 

    Matched MeSH terms: Retinal Vessels/anatomy & histology*
  17. Munira Y, Zunaina E, Azhany Y
    Int Med Case Rep J, 2013;6:37-9.
    PMID: 23966803 DOI: 10.2147/IMCRJ.S47769
    A 15-year-old boy presented with painless progressive blurring of vision in the right eye for 1 year in duration. His visual acuity in the right eye was hand movement. The right fundus showed presence of extensive subretinal exudates at the posterior pole and a retinal macrocyst at the temporal periphery. It was associated with exudative retinal detachment at the inferior periphery of the retina. Fundus angiography revealed telangiectatic retinal vessels at the superotemporal retina. Based on clinical and angiographic findings, a diagnosis of Coats disease was made. He was treated with retinal laser photocoagulation. There was resolution of the exudative retinal detachment, reduction of subretinal exudates, and regression of the retinal macrocyst with improvement of visual acuity to 1/60 post-laser therapy.
    Matched MeSH terms: Retinal Vessels
  18. Mushawiahti, M., Rokiah, O., Umi, K.M.N., Leow, S.N.
    Medicine & Health, 2014;9(2):134-138.
    MyJurnal
    Retinopathy of prematurity (ROP) is a disorder describing an immature vascularisation
    of a developing retina in low birth weight preterm infants. This condition potentially
    leads to blindness. ROP developed as a response of hypoxia of the eye due to
    incomplete development of the retinal vessels. ROP is commonly reported as
    bilateral disease,a small percentage of infants have asymmetrical changes. We
    report a case of long-term outcome of a asymmetry ROP changes with peripheral
    retinal ablation in a single eye. This particular case demonstrates the possible longterm
    outcome of unilaterally treated ROP which could either be due to the severity
    of the disease itself or the treatment she received. It is important to highlight the
    possibility of unequal development of the eye in asymmetrical presentation of ROP.
    Matched MeSH terms: Retinal Vessels
  19. Mustafar R, Hishamuddin KAM, Mohd R, Kamaruzaman L, Halim WHWA, Hsien YM, et al.
    BMC Nephrol, 2023 Nov 13;24(1):338.
    PMID: 37957551 DOI: 10.1186/s12882-023-03386-w
    BACKGROUND: The prevalence of chronic kidney disease (CKD) is rising in Malaysia. Early detection is necessary to prevent disease progression, especially in terms of cardiovascular (CV) risk, the main cause of death in end-stage renal disease (ESRD). Retinal changes have proven to be a good predictor of CKD whereas cardiac biomarkers are useful in cardiovascular risk stratification. We aimed to demonstrate the correlation between retinal changes and cardiac biomarkers with CKD.

    METHODS: This single-centre cross-sectional study was conducted among patients with CKD stages 3, 4, and 5 (not on dialysis) from the Nephrology Clinic, Universiti Kebangsaan Malaysia Medical Centre. A total of 84 patients were recruited with an even distribution across all three stages. They underwent fundus photography where images were analysed for vessel calibre (central retinal venular equivalent (CRVE), central retinal arterial equivalent (CRAE), and tortuosity indices. Optical coherence tomography was used to measure macular volume. Blood samples were sent for laboratory measurement of high-sensitivity C-reactive protein (hs-CRP) and asymmetric dimethylarginine (ADMA). These parameters were analysed in relation to CKD.

    RESULTS: The mean age was 58.8 ± 11.7 years, with 52.4% male and 47.6% female patients. Among them, 64.3% were diabetics. Retinal vessel tortuosity (r = -0.220, p-value = 0.044) had a negative correlation with the estimated glomerular filtration rate (eGFR). CRVE showed a positive correlation with proteinuria (r = 0.342, p = 0.001) but negative correlation with eGFR (r = -0.236, p = 0.031). Hs-CRP positively correlated with proteinuria (r = 0.313, p = 0.04) and negatively correlated with eGFR (r = -0.370, p = 0.001). Diabetic patients had a higher CRVE compared to non-diabetic patients (p = 0.02). History of ischaemic heart disease was associated with a smaller macula volume (p = 0.038). Male gender (r2 = 0.066, p = 0.031) and HbA1c had a positive influence (r2 = 0.066, p = 0.047) on retinal vessel tortuosity. There was a positive influence of age (r2 = 0.183, p = 0.012) and hs-CRP (r2 = 0.183, p = 0.045) on CRVE. As for macula volume, it negatively correlated with diabetes (r2 = 0.015, p = 0.040) and positively correlated with smoking (r2 = 0.015, p = 0.012).

    CONCLUSION: Our study showed that eGFR value affects retinal vessel tortuosity, CRVE and hs-CRP. These parameters bear potential to be used as non-invasive tools in assessing CKD. However, only macula volume may be associated with CVD risk among the CKD population.

    Matched MeSH terms: Retinal Vessels
  20. Badsha S, Reza AW, Tan KG, Dimyati K
    J Digit Imaging, 2013 Dec;26(6):1107-15.
    PMID: 23515843 DOI: 10.1007/s10278-013-9585-8
    Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.
    Matched MeSH terms: Retinal Vessels/pathology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links