Displaying all 2 publications

Abstract:
Sort:
  1. Ngu MS, Thomson MJ, Bhuiyan MA, Ho C, Wickneswari R
    Genet. Mol. Res., 2014;13(4):9477-88.
    PMID: 25501158 DOI: 10.4238/2014.November.11.13
    Grain weight is a major component of rice grain yield and is controlled by quantitative trait loci. Previously, a rice grain weight quantitative trait locus (qGW6) was detected near marker RM587 on chromosome 6 in a backcross population (BC2F2) derived from a cross between Oryza rufipogon IRGC105491 and O. sativa cv. MR219. Using a BC2F5 population, qGW6 was validated and mapped to a region of 4.8 cM (1.2 Mb) in the interval between RM508 and RM588. Fine mapping using a series of BC4F3 near isogenic lines further narrowed the interval containing qGW6 to 88 kb between markers RM19268 and RM19271.1. According to the Duncan multiple range test, 8 BC4F4 near isogenic lines had significantly higher 100-grain weight (4.8 to 7.5% over MR219) than their recurrent parent, MR219 (P < 0.05). According to the rice genome automated annotation database, there are 20 predicted genes in the 88-kb target region, and 9 of them have known functions. Among the genes with known functions in the target region, in silico gene expression analysis showed that 9 were differentially expressed during the seed development stage(s) from gene expression series GSE6893; however, only 3 of them have known functions. These candidates provide targets for further characterization of qGW6, which will assist in understanding the genetic control of grain weight in rice.
    Matched MeSH terms: Seeds/anatomy & histology*
  2. Golam F, Prodhan ZH
    J Sci Food Agric, 2013 Feb;93(3):449-56.
    PMID: 23238771 DOI: 10.1002/jsfa.5983
    Kernel elongation after cooking is an important character of fine rice and most rice consumers prefer length-wise elongation. Although improvement of aromatic rice began early in the 1970s, until now the mechanisms and genetics of kernel elongation has remained unrevealed. Kernel elongation is considered as a physical phenomenon and is influenced by several physicochemical and genetic factors, including genotypes, aging temperature, aging time, water uptake, amylose content and gelatinization temperature. Recently the complete genetic map of fine rice has been created and the gene responsible for kernel length identified; moreover, this gene is tightly linked with the cooked kernel elongation trait. Several molecular markers linked with cooked kernel elongation have been developed. These tools will be helpful for the improvement of this important trait. For the proper study of cooked kernel elongation of rice, this review paper will provide the basis and directional materials for further studies.
    Matched MeSH terms: Seeds/anatomy & histology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links