Displaying publications 1 - 20 of 59 in total

  1. Sankaran PM, Caleb JTD, Sebastian PA
    Zootaxa, 2020 Jul 01;4808(1):zootaxa.4808.1.12.
    PMID: 33055998 DOI: 10.11646/zootaxa.4808.1.12
    The spider genus Glenognatha Simon, 1887 (Tetragnathidae) currently has 34 nominal species distributed in Afrotropical region, Indo-Malaya, Nearctic, Neotropics, Oceania and Palearctic regions (Cabra-García Brescovit 2016; World Spider Catalog 2020). It has one representative in India: Glenognatha dentata (Zhu Wen, 1978) (World Spider Catalog 2020). The genus Pachygnatha Sundevall, 1823 currently comprises 46 nominal species distributed in Africa, Holarctic, South and South-East Asia (World Spider Catalog 2020). Biswas and Roy (2004) recorded this genus in India, while they described Pachygnatha silentvalliensis Biswas Roy, 2004. The species is known from its original verbal description only since the genitalic illustrations were apparently not published along with the description (Biswas Roy 2004), thus leaving its identity obscured. To redescribe and illustrate this species, we examined its type material and found that Biswas and Roy (2004) had misidentified the species and in fact it belongs to Tylorida Simon, 1894. In this paper, we describe a new Glenognatha species from the southern Western Ghats of India, transfer Dyschiriognatha ganeshi Bodkhe, Manthen Tanikawa, 2014 to Glenognatha and synonymise P. silentvalliensis with Tylorida marmorea (Pocock, 1901).
    Matched MeSH terms: Spiders*
  2. JÄger P
    Zootaxa, 2020 Oct 22;4866(1):zootaxa.4866.1.1.
    PMID: 33311200 DOI: 10.11646/zootaxa.4866.1.1
    The genus Olios Walckenaer, 1837 is revised, a generic diagnosis is given and an identification key to eight species groups is provided. Olios in its revised sense includes 87 species and is distributed in Africa, southern Europe and Asia. Three species groups are revised in this first part, an identification key to species for each group is provided, five new species are described and all included species are illustrated. The Olios argelasius-group includes O. argelasius Walckenaer, 1806, O. canariensis (Lucas, 1838), O. pictus (Simon, 1885), O. fasciculatus Simon, 1880 and O. kunzi spec. nov. (male, female; Namibia, Zambia, South Africa); it is distributed in the Mediterranean region, northern Africa including Canary Islands, in the Middle East, South Sudan, East Africa, and southern Africa. The Olios coenobitus-group includes O. angolensis spec. nov. (male; Angola), O. coenobitus Fage, 1926, O. denticulus spec. nov. (male; Java), O. erraticus Fage, 1926, O. gambiensis spec. nov. (male, female; Gambia), O. milleti (Pocock, 1901b), O. mordax (O. Pickard-Cambridge, 1899) and O. pusillus Simon, 1880; it is distributed in Africa (Gambia, Angola, Tanzania, Madagascar) and Asia (India, Sri Lanka, Indonesia: Java). The Olios auricomis-group includes only O. auricomis (Simon, 1880), distributed in Africa south of 10°N. Other species groups are introduced briefly and will be revised in forthcoming revisions. The Olios correvoni-group includes currently O. claviger (Pocock, 1901a), O. correvoni Lessert, 1921, O. correvoni choupangensis Lessert, 1936, O. darlingi (Pocock, 1901a), O. faesi Lessert, 1933, O. freyi Lessert, 1929, O. kassenjicola Strand, 1916b, O. kruegeri (Simon, 1897a), O. quadrispilotus (Simon, 1880) comb. nov., O. lucieni comb. nov. nom. nov., O. sjostedti Lessert, 1921 and O. triarmatus Lessert, 1936; it is distributed in Africa (Zimbabwe, Tanzania incl. Zanzibar, Angola, Congo, Central Africa, South Africa, Botswana; O. darlingi was recorded from Zimbabwe and Botswana and not from South Africa). The Olios rossettii-group includes: O. baulnyi (Simon, 1874), O. bhattacharjeei (Saha Raychaudhuri, 2007), O. brachycephalus Lawrence, 1938, O. floweri Lessert, 1921, O. jaldaparaensis Saha Raychaudhuri, 2007, O. japonicus Jäger Ono, 2000, O. kolosvaryi (Caporiacco, 1947b) comb. nov., O. longipes (Simon, 1884b), O. lutescens (Thorell, 1894), O. mahabangkawitus Barrion Litsinger, 1995, O. obesulus (Pocock, 1901b), O. rossettii (Leardi, 1901), O. rotundiceps (Pocock, 1901b), O. sericeus (Kroneberg, 1875), O. sherwoodi Lessert, 1929, O. suavis (O. Pickard-Cambridge, 1876), O. tarandus (Simon, 1897d), O. tener (Thorell, 1891) and O. tiantongensis (Zhang Kim, 1996); it is distributed in the Mediterranean region, in Africa (especially eastern half) and Asia (Middle East and Central Asia to Japan, Philippines and Java). The Olios nentwigi-group includes O. diao Jäger, 2012, O. digitatus Sun, Li Zhang, 2011, O. jaenicke Jäger, 2012, O. muang Jäger, 2012, O. nanningensis (Hu Ru, 1988), O. nentwigi spec. nov. (male, female; Indonesia: Krakatau), O. perezi Barrion Litsinger, 1995, O. scalptor Jäger Ono, 2001 and O. suung Jäger, 2012; it is distributed in Asia (Thailand, Laos, Vietnam, Cambodia, China, Taiwan, Indonesia, Philippines), Papua New Guinea and Mariana Islands. Olios diao is newly recorded from Cambodia and Champasak Province in Laos. The Olios stimulator-group includes O. admiratus (Pocock, 1901b), O. hampsoni (Pocock, 1901b), O. lamarcki (Latreille, 1806) and O. stimulator Simon, 1897c; it is distributed in Africa (Madagascar, Seychelles), Middle East and South Asia (United Arab Emirates, Iraq, Afghanistan, Pakistan, India, Maldives, Sri Lanka). The Olios hirtus-group includes O. bungarensis Strand, 1913b, O. debalae (Biswas Roy, 2005), O. ferox (Thorell, 1892), O. hirtus (Karsch, 1879a), O. igraya (Barrion Litsinger, 1995) comb. nov., O. menghaiensis (Wang Zhang, 1990), O. nigrifrons (Simon, 1897b), O. punctipes Simon, 1884a, O. punctipes sordidatus (Thorell, 1895), O. pyrozonis (Pocock, 1901b), O. sungaya (Barrion Litsinger, 1995) comb. nov., O. taprobanicus Strand, 1913b and O. tikaderi Kundu et al., 1999; it is distributed in South, East and Southeast Asia (Sri Lanka, India, Nepal, Bangladesh, Myanmar, China, Laos, Thailand, Cambodia, Vietnam, Malaysia, Indonesia, Philippines). Nineteen synonyms are recognised: Nisueta Simon, 1880, Nonianus Simon, 1885, both = Olios syn. nov.; O. spenceri Pocock, 1896, O. werneri (Simon, 1906a), O. albertius Strand, 1913a, O. banananus Strand, 1916a, O. aristophanei Lessert, 1936, all = O. fasciculatus; O. subpusillus Strand, 1907c = O. pusillus; O. schonlandi (Pocock, 1900b), O. rufilatus Pocock, 1900c, O. chiracanthiformis Strand, 1906, O. ituricus Strand, 1913a, O. isongonis Strand, 1915, O. flavescens Caporiacco, 1941 comb. nov., O. pacifer Lessert, 1921, all = O. auricomis; Olios sanguinifrons (Simon, 1906b) = O. rossettii Leardi, 1901; O. phipsoni (Pocock, 1899), Sparassus iranii (Pocock, 1901b), both = O. stimulator; O. fuligineus (Pocock, 1901b) = O. hampsoni. Nine species are transferred to Olios: O. gaujoni (Simon, 1897b) comb. nov., O. pictus comb. nov., O. unilateralis (Strand, 1908b) comb. nov. (all three from Nonianus), O. affinis (Strand, 1906) comb. nov., O. flavescens Caporiacco, 1941 comb. nov., O. quadrispilotus comb. nov., O. similis (Berland, 1922) comb. nov. (all four from Nisueta), O. sungaya (Barrion Litsinger, 1995) comb. nov., O. igraya (Barrion Litsinger, 1995) comb. nov. (both from Isopeda L. Koch 1875). Olios lucieni nom. nov. comb. nov. is proposed for Nisueta similis Berland, 1922, which becomes a secondary homonym. The male of O. quadrispilotus comb. nov. is described for the first time. Sixteen species are currently without affiliation to one of the eight species groups: O. acolastus (Thorell, 1890), O. alluaudi Simon, 1887a, O. batesi (Pocock, 1900c), O. bhavnagarensis Sethi Tikader, 1988, O. croseiceps (Pocock, 1898b), O. durlaviae Biswas Raychaudhuri, 2005, O. gentilis (Karsch, 1879b), O. gravelyi Sethi Tikader, 1988, O. greeni (Pocock, 1901b), O. inaequipes (Simon 1890), O. punjabensis Dyal, 1935, O. ruwenzoricus Strand, 1913a, O. senilis Simon, 1880, O. somalicus Caporiacco, 1940, O. wroughtoni (Simon, 1897c) and O. zulu Simon, 1880. Five of these species are illustrated in order to allow identification of the opposite (male) sex and to settle their systematic placement. Thirty-seven species are considered nomina dubia, mostly because they were described from immatures, three of them are illustrated: O. abnormis (Blackwall, 1866), O. affinis (Strand, 1906) comb. nov., O. africanus (Karsch, 1878), O. amanensis Strand, 1907a, O. annandalei (Simon, 1901), O. bivittatus Roewer, 1951, O. ceylonicus (Leardi, 1902), O. conspersipes (Thorell, 1899), Palystes derasus (C.L. Koch, 1845) comb. nov., O. detritus (C.L. Koch, 1845), O. digitalis Eydoux Souleyet, 1842, O. exterritorialis Strand, 1907b, O. flavovittatus (Caporiacco, 1935), O. fugax (O. Pickard-Cambridge, 1885), O. guineibius Strand, 1911c, O. guttipes (Simon, 1897a), O. kiranae Sethi Tikader, 1988, O. longespinus Caporiacco, 1947b, O. maculinotatus Strand, 1909, O. morbillosus (MacLeay, 1827), O. occidentalis (Karsch, 1879b), O. ornatus (Thorell, 1877), O. pagurus Walckenaer, 1837, O. patagiatus (Simon, 1897b), O. praecinctus (L. Koch, 1865), O. provocator Walckenaer, 1837, O. quesitio Moradmand, 2013, O. quinquelineatus Taczanowski, 1872, O. sexpunctatus Caporiacco, 1947a, Heteropoda similaris (Rainbow, 1898) comb. rev., O. socotranus (Pocock, 1903), O. striatus (Blackwall, 1867), O. timidus (O. Pickard-Cambridge, 1885), Remmius variatus (Thorell, 1899) comb. nov., O. vittifemur Strand, 1916b, O. wolfi Strand, 1911a and O. zebra (Thorell, 1881). Eighty-nine species are misplaced in Olios but cannot be affiliated to any of the known genera. They belong to the subfamilies Deleninae Hogg, 1903, Sparassinae Bertkau, 1872 and Palystinae Simon, 1897a, nineteen of them are illustrated: O. acostae Schenkel, 1953, O. actaeon (Pocock, 1898c), O. artemis Hogg, 1915, O. atomarius Simon, 1880, O. attractus Petrunkevitch, 1911, O. auranticus Mello-Leitão, 1918, O. benitensis (Pocock, 1900c), O. berlandi Roewer, 1951, O. biarmatus Lessert, 1925, O. canalae Berland, 1924, O. caprinus Mello-Leitão, 1918, O. chelifer Lawrence, 1937, O. chubbi Lessert, 1923, O. clarus (Keyserling, 1880), O. coccineiventris (Simon, 1880), O. corallinus Schmidt, 1971, O. crassus Banks, 1909, O. debilipes Mello-Leitão, 1945, O. discolorichelis Caporiacco, 1947a, O. erroneus O. Pickard-Cambridge, 1890, O. extensus Berland, 1924, O. fasciiventris Simon, 1880 , O. feldmanni Strand, 1915, O. fimbriatus Chrysanthus, 1965, O. flavens Nicolet, 1849, O. fonticola (Pocock, 1902), O. formosus Banks, 1929, O. francoisi (Simon, 1898a), O. fulvithorax Berland, 1924, O. galapagoensis Banks, 1902, O. gaujoni (Simon, 1897b) comb. nov., O. giganteus Keyserling, 1884, O. hoplites Caporiacco, 1941, O. humboldtianus Berland, 1924, O. insignifer Chrysanthus, 1965, O. insulanus (Thorell, 1881), O. keyserlingi (Simon, 1880), O. lacticolor Lawrence, 1952, O. lepidus Vellard, 1924, O. longipedatus Roewer, 1951, O. machadoi Lawrence, 1952, O. macroepigynus Soares, 1944, O. maculatus Blackwall, 1862, O. marshalli (Pocock, 1898a), O. mathani (Simon, 1880), O. minensis Mello-Leitão, 1917, O. monticola Berland, 1924, O. mutabilis Mello-Leitão, 1917, O. mygalinus Doleschall, 1857, O. mygalinus cinctipes Merian, 1911, O. mygalinus nirgripalpis Merian, 1911, O. neocaledonicus Berland, 1924, O. nigristernis (Simon, 1880), O. nigriventris Taczanowski, 1872, O. oberzelleri Kritscher, 1966, O. obscurus (Keyserling, 1880), O. obtusus F.O. Pickard-Cambridge, 1900, O. orchiticus Mello-Leitão, 1930, O. oubatchensis Berland, 1924, O. paraensis (Keyserling, 1880), O. pellucidus (Keyserling, 1880), O. peruvianus Roewer, 1951, O. pictitarsis Simon, 1880, O. plumipes Mello-Leitão, 1937, O. princeps Hogg, 1914, O. pulchripes (Thorell, 1899), O. puniceus (Simon, 1880), O. roeweri Caporiacco, 1955a, O. rubripes Taczanowski, 1872, O. rubriventris (Thorell, 1881), O. rufus Keyserling, 1880, O. sanctivincenti (Simon, 1898b), O. similis (O. Pickard-Cambridge, 1890), O. simoni (O. Pickard-Cambridge, 1890), O. skwarrae Roewer, 1933, O. spinipalpis (Pocock, 1901a), O. stictopus (Pocock, 1898a), O. strandi Kolosváry, 1934, O. subadultus Mello-Leitão, 1930, O. sulphuratus (Thorell, 1899), O. sylvaticus (Blackwall, 1862), O. tamerlani Roewer, 1951, O. tigrinus (Keyserling, 1880), O. trifurcatus (Pocock, 1900c), O. trinitatis Strand, 1916a, O. velox (Simon, 1880), O. ventrosus Nicolet, 1849, O. vitiosus Vellard, 1924 and O. yucatanus Chamberlin, 1925. Seventeen taxa are transferred from Olios to other genera within Sparassidae, eight of them are illustrated: Adcatomus luteus (Keyserling, 1880) comb. nov., Eusparassus flavidus (O. Pickard-Cambridge, 1885) comb. nov., Palystes derasus (C.L. Koch, 1845) comb. nov., Heteropoda similaris (Rainbow, 1898) comb. rev., Remmius variatus (Thorell, 1899) comb. nov., Nolavia audax (Banks, 1909) comb. nov., Nolavia antiguensis (Keyserling, 1880) comb. nov., Nolavia antiguensis columbiensis (Schmidt, 1971) comb. nov., Nolavia fuhrmanni (Strand, 1914) comb. nov., Nolavia helva (Keyserling, 1880) comb. nov., Nolavia stylifer (F.O. Pickard-Cambridge, 1900) comb. nov., Nolavia valenciae (Strand, 1916a) comb. nov., Nungara cayana (Taczanowski, 1872) comb. nov., Polybetes bombilius (F.O. Pickard-Cambridge, 1899) comb. nov., Polybetes fasciatus (Keyserling, 1880) comb. nov., Polybetes hyeroglyphicus (Mello-Leitão, 1918) comb. nov. and Prychia paalonga (Barrion Litsinger, 1995) comb. nov. One species is transferred from Olios to the family Clubionidae Wagner, 1887: Clubiona paenuliformis (Strand, 1916a) comb. nov.
    Matched MeSH terms: Spiders*
  3. Zhang BS, Zhang F
    Zootaxa, 2019 Mar 20;4568(2):zootaxa.4568.2.2.
    PMID: 31715856 DOI: 10.11646/zootaxa.4568.2.2
    Four new species of the genus Mallinella Strand, 1906, from the natural forests of Malaysia, are described as Mallinella bicanaliculata sp. n. (♂♀), M. calautica sp. n. (♂♀), M. laxa sp. n. (♂♀), and M. obliqua sp. n. (♂♀). The four new species belong to four species groups and were collected from the forest litter in Sabah state by sieving.
    Matched MeSH terms: Spiders*
  4. Chang CC, Teo HY, Norma-Rashid Y, Li D
    Sci Rep, 2017 01 17;7:40734.
    PMID: 28094288 DOI: 10.1038/srep40734
    Predator-prey interactions play important roles in ecological communities. Personality, consistent inter-individual differences in behaviour, of predators, prey or both are known to influence inter-specific interactions. An individual may also behave differently under the same situation and the level of such variability may differ between individuals. Such intra-individual variability (IIV) or predictability may be a trait on which selection can also act. A few studies have revealed the joint effect of personality types of both predators and prey on predator foraging performance. However, how personality type and IIV of both predators and prey jointly influence predator foraging performance remains untested empirically. Here, we addressed this using a specialized spider-eating jumping spider, Portia labiata (Salticidae), as the predator, and a jumping spider, Cosmophasis umbratica, as the prey. We examined personality types and IIVs of both P. labiata and C. umbratica and used their inter- and intra-individual behavioural variation as predictors of foraging performance (i.e., number of attempts to capture prey). Personality type and predictability had a joint effect on predator foraging performance. Aggressive predators performed better in capturing unpredictable (high IIV) prey than predictable (low IIV) prey, while docile predators demonstrated better performance when encountering predictable prey. This study highlights the importance of the joint effect of both predator and prey personality types and IIVs on predator-prey interactions.
    Matched MeSH terms: Spiders*
  5. Tan J
    Zootaxa, 2018 Aug 07;4457(1):129-142.
    PMID: 30314183 DOI: 10.11646/zootaxa.4457.1.6
    A new species of Argiope Audouin 1826, A. hoiseni new species is described from Perak and Selangor, Peninsular Malaysia based on morphology and DNA information of the mitochondrial (16S rRNA, COI and COII) and nuclear-encoded (H3A, 18S rRNA) molecular markers. Epigynal structure suggested Argiope hoiseni to be similar to A. jinghongensis Yin, Peng Wang 1994, A. luzona (Walckenaer 1841), A. pulchella Thorell 1881 and A. taprobanica Thorell 1887. Molecular sequence data including the new species inferred that it is monophyletic with an intraspecific variation of 0.87-3.59 % based on the 16S+COI+COII+H3A dataset. Phylogenetic analyses also revealed insights into the evolutionary lineages of Argiope species in Southeast Asia as well as corroborated recent taxonomic changes and species synonymies associated with Argiope. Two new distribution records were also reported for A. chloreis Thorell,1877 and A. doleschalli Thorell, 1873 in Peninsular Malaysia.
    Matched MeSH terms: Spiders*
  6. Yamasaki T, Hashimoto Y, Endo T, Hyodo F, Itioka T, Meleng P
    Zootaxa, 2018 Nov 14;4521(3):335-356.
    PMID: 30486151 DOI: 10.11646/zootaxa.4521.3.2
    The genus Myrmarachne MacLeay, 1839 (Araneae: Salticidae) is one of the most diversified salticid groups in Southeast Asia, with 23 species previously recorded from Borneo. Based on the collections accumulated from 2004 to 2014 in the Lambir Hills National Park, we herein describe six new species: M. amabilis sp. nov., M. hashimotoi sp. nov., M. lagarosoma sp. nov., M. leptosoma sp. nov., M. salaputium sp. nov. and M. tintinnabulum sp. nov. In addition, we describe the female of M. endoi Yamasaki Ahmad, 2013 for the first time. The male-female combination in M. amabilis sp. nov., M. tintinnabulum sp. nov. and M. endoi were confirmed by DNA barcoding.
    Matched MeSH terms: Spiders*
  7. Lan T, Yao Z, Zheng G, Wongprom P, Li S
    Zootaxa, 2020 May 14;4778(2):zootaxa.4778.2.4.
    PMID: 33055822 DOI: 10.11646/zootaxa.4778.2.4
    The genus Savarna Huber, 2005 comprises only five species, from southern Thailand, Peninsular Malaysia and Sumatra. In this study, five new species are described from Thailand: Savarna bannang sp. nov. (Yala), S. chiangmai sp. nov. (Chiangmai), S. huahin sp. nov. (Prachuap Kiri Khan), S. satun sp. nov. (Satun), S. thungsong sp. nov. (Nakhon Srithammarat). All new species are described from males and females. The distribution of S. chiangmai sp. nov. represent the northernmost record of the genus.
    Matched MeSH terms: Spiders*
  8. Law YH
    Science, 2019 03 01;363(6430):914-915.
    PMID: 30819943 DOI: 10.1126/science.363.6430.914
    Matched MeSH terms: Spiders*
  9. Tanasevitch AV
    Zootaxa, 2014;3841(1):67-89.
    PMID: 25082028 DOI: 10.11646/zootaxa.3841.1.3
    Recent linyphiid collections from Laos as well as some additional specimens from Thailand and West Malaysia are examined. Six species and two genera are described as new to science: Bathyphantes paracymbialis n. sp., Nematogmus asiaticus n. sp., Theoa hamata n. sp.; Asiagone n. gen. is erected for Asiagone signifera n. sp. (type species) and A. perforata n. sp.; Laogone n. gen. is established for Laogone cephala n. sp. The following new synonyms are proposed: Gorbothorax Tanasevitch, 1998 n. syn. = Nasoona Locket, 1982; Paranasoona Heimer, 1984 n. syn. and Millplophrys Platnick, 1998 n. syn. = Atypena Simon, 1894; Gorbothorax ungibbus Tanasevitch, 1998 n. syn. = Oedothorax asocialis Wunderlich, 1974; Hylyphantes birmanicus (Thorell, 1895) n. syn. = H. graminicola (Sundevall, 1830). The following new combinations are proposed: Atypena cirrifrons (Heimer, 1984) n. comb. ex from Paranasoona; A. pallida (Millidge, 1995) and A. crocatoa (Millidge, 1995) both n. comb. ex Millplophrys; Nasoona asocialis (Wunderlich, 1974) n. comb. ex Oedothorax Bertkau, 1883; N. asocialis (Wunderlich, 1974), N. comata (Tanasevitch, 1998), N. conica (Tanasevitch, 1998), N. setifera (Tanasevitch, 1998) and N. wunderlichi (Brignoli, 1983), all n. comb. ex Gorbothorax. Eight linyphiid species are newly recorded from Laos: A. cirrifrons (Heimer, 1984), Bathyphantes floralis Tu & Li, 2006, Hylyphantes graminicola (Sundevall, 1830), Nasoona asocialis, N. crucifera (Thorell, 1895), Nasoonaria sinensis Wunderlich & Song, 1995, Neriene birmanica (Thorell, 1887), and N. oxycera Tu & Li, 2006. The linyphiid spider fauna of Laos currently contains 15 species and is unusually highly specific. All species, except the Palearctic H. graminicola, are probably represented by Southeastern Asian or Oriental autochthons. 
    Matched MeSH terms: Spiders/anatomy & histology; Spiders/classification*
  10. Bayer S
    Zootaxa, 2014;3826(1):1-54.
    PMID: 24990038 DOI: 10.11646/zootaxa.3826.1.1
    Seven new Psechrus species are described from South East Asia: P. arietinus sp. nov.(♂♀, Vietnam), P. insulanus sp. nov.(♂, Thailand), P. ampullaceus sp. nov.(♂♀, Vietnam), P. omistes sp. nov.(♂, Indonesia, Sumatra), P. quasillus sp. nov.(♂♀, Malaysia, Borneo), P. huberi sp. nov.(♀, Philippines), and P. wade sp. nov.(♂, Philippines). For the following species, new records are listed and intraspecific variation is discussed and illustrated: P. libelti Kulczyński, 1908, P. norops Bayer, 2012, P. rani Wang & Yin, 2001, P. khammouan Jäger, 2007, P. luangprabang Jäger, 2007, P. jaegeri Bayer, 2012, P. obtectus Bayer, 2012, P. kenting Yoshida, 2009 and P. crepido Bayer, 2012, and Fecenia protensa Thorell, 1891. The latter species is recorded from Vietnam for the first time. P. norops, P. libelti and an unidentified Psechrus species from Baluno, Mindanao are for the first time characterised and illustrated by their pre-epigynes and pre-vulvae.
    Matched MeSH terms: Spiders/anatomy & histology*; Spiders/classification*
  11. Dankittipakul P, Koh JK, Singtripop T
    Zootaxa, 2014;3826(2):377-85.
    PMID: 24990054 DOI: 10.11646/zootaxa.3826.2.7
    This article is the first formal record of the genus Mallinella Strand, 1906 in Brunei Darussalam. Four Mallinella species are documented. Mallinella merimbunenis sp. nov., M. myrmecophaga sp. nov., and M. platyrhyncha sp. nov. are newly described. The females of M. bigemina Dankittipakul, Jocqué & Singtripop, 2012 are here recorded from Brunei for the first time. The latter species was previously known only from an evergreen hill forest at 2,000 m elevation at Mt. Kinabalu of Kinabalu Park in Sabah.
    Matched MeSH terms: Spiders/anatomy & histology*; Spiders/classification*
  12. Li F, Li S, Jäger P
    Zootaxa, 2014;3768:119-38.
    PMID: 24871171 DOI: 10.11646/zootaxa.3768.2.2
    Five new Althepus species and one new Psiloderces species of the family Ochyroceratidae are described from Southeast Asia: Althepus erectus spec. nov. (male) and A. nophaseudi spec. nov. (male, female) from Laos, A. flabellaris spec. nov. (male, female) from Thailand, A. reduncus spec. nov. (male) from Myanmar, A. spiralis spec. nov. (male) from Malaysia, and Psiloderces dicellocerus spec. nov. (male) from Indonesia. Primary types are deposited in the Senckenberg Research Institute in Frankfurt, Germany (SMF).
    Matched MeSH terms: Spiders/anatomy & histology*; Spiders/classification*
  13. Logunov DV
    Zootaxa, 2014;3894:183-7.
    PMID: 25544631 DOI: 10.11646/zootaxa.3894.1.16
    A new species Uroballus koponeni sp. n. (♀) from Malaysia (Borneo) is diagnosed, illustrated and described. The genus is unusual for jumping spiders in having extremely long spinnerets.
    Matched MeSH terms: Spiders/anatomy & histology; Spiders/classification*; Spiders/growth & development
  14. Yao Z, Li S, Jäger P
    Zootaxa, 2014;3793:331-49.
    PMID: 24870173 DOI: 10.11646/zootaxa.3793.3.2
    Four new species belonging to four genera of the subfamily Pholcinae are reported from Southeast Asia: Belisana protumida spec. nov. (male, female), Khorata bayeri spec. nov. (male), Pholcus schawalleri spec. nov. (male), and Uthina khaosokensis spec. nov. (male).
    Matched MeSH terms: Spiders/anatomy & histology*; Spiders/classification*; Spiders/physiology
  15. Zhang BS, Zhang F
    Zookeys, 2018.
    PMID: 30344434 DOI: 10.3897/zookeys.789.24261
    Three new species of the genus Asceua Thorell, 1887, from the natural forests of Malaysia, are described as Asceuabifurcasp. n. (♂♀), A.curvasp. n. (♂), and A.trimaculatasp. n. (♀). The genus Asceua is reported from Malaysia for the first time.
    Matched MeSH terms: Spiders
  16. Mohamad Izzuan Mohd ishar, Moh Khata Jabor
    Kemajuan negara dan perkembangan bangsa adalah berdasarkan sistem pendidikan yang diamalkan. Pendidikan yang baik dapat melahirkan generasi yang bertanggungjawab dan menghargai kehidupan. Hal ini telah mencetuskan Wawasan Pendidikan Negara yang merupakan inti pati kepada Wawasan 2020. Usaha menyemai nilai murni dan perubahan pendidikan dalam kalangan pelajar kini turut terletak di bahu guru. Sifat kepimpinan yang terdapat pada guru amat penting dalam pembentukan wawasan pendidikan terutama gaya kepimpinan yang digunakan terhadap pelajar. Berdasarkan hala tuju yang telah digariskan, guru perlu menggunakan gaya kepimpinan yang diamalkan secara menyeluruh bagi memastikan segala aktiviti atau strategi yang dirancang mengikut hala tuju tersebut. Peranan seorang guru dalam membentuk wawasan ini juga membantu memberi kefahaman kepada guru dalam segala tindak tanduk yang perlu dilakukannya bagi mencapai Wawasan Pendidikan Negara
    Matched MeSH terms: Spiders
  17. Tanasevitch AV
    Zootaxa, 2017 Feb 03;4227(3):zootaxa.4227.3.2.
    PMID: 28187572 DOI: 10.11646/zootaxa.4227.3.2
    Linyphiid spiders collected from the Indo-Malayan Region and kept at three European Museums are studied. Twenty-three known species are newly recorded from continental or insular parts of Southeastern Asia and from the Oriental area of India. Seven new species are described: Asiagone komannai n. sp. (from Thailand), Erigone apophysalis n. sp. and E. sumatrana n. sp. (Sumatra, Indonesia), Gnathonarium luzon n. sp. (Philippines), Ketambea acuta n. sp. (Thailand, Myanmar), Oedothorax myanmar n. sp. (Myanmar) and Theoa malaya n. sp. (West Malaysia).
    Matched MeSH terms: Spiders*
  18. Cabra-García J, Brescovit AD
    Zootaxa, 2016 Jan 27;4069(1):1-183.
    PMID: 27395905 DOI: 10.11646/zootaxa.4069.1.1
    A taxonomic revision and phylogenetic analysis of the spider genus Glenognatha Simon, 1887 is presented. This analysis is based on a data set including 24 Glenognatha species plus eight outgroups representing three related tetragnathine genera and one metaine as the root. These taxa were scored for 78 morphological characters. Parsimony was used as the optimality criterion and a sensitivity analysis was performed using different character weighting concavities. Seven unambiguous synapomorphies support the monophyly of Glenognatha. Some internal clades within the genus are well-supported and its relationships are discussed. Glenognatha as recovered includes 27 species, four of them only known from males. A species identification key and distribution maps are provided for all. New morphological data are also presented for thirteen previously described species. Glenognatha has a broad distribution occupying the Neartic, Afrotropic, Indo-Malaya, Oceania and Paleartic regions, but is more diverse in the Neotropics. The following eleven new species are described: G. vivianae n. sp., G. caaguara n. sp., G. boraceia n. sp. and G. timbira n. sp. from southeast Brazil, G. caparu n. sp., G. januari n. sp. and G. camisea n. sp. from the Amazonian region, G. mendezi n. sp., G. florezi n. sp. and G. patriceae n. sp. from northern Andes and G. gouldi n. sp. from Southern United States and central Mexico. Females of G. minuta Banks, 1898, G. gaujoni Simon, 1895 and G. gloriae (Petrunkevitch, 1930) and males of G. globosa (Petrunkevitch, 1925) and G. hirsutissima (Berland, 1935) are described for the first time. Three new combinations are proposed in congruence with the phylogenetic results: G. argyrostilba (O. P.-Cambridge, 1876) n. comb., G. dentata (Zhu & Wen, 1978) n. comb. and G. tangi (Zhu, Song & Zhang, 2003) n. comb., all previously included in Dyschiriognatha Simon, 1893. The following taxa are newly synonymized: Dyschiriognatha montana Simon, 1897, Glenognatha mira Bryant, 1945 and Glenognatha maelfaiti Baert, 1987 with Glenognatha argyrostilba (Pickard-Cambridge, 1876) and Glenognatha centralis Chamberlin, 1925 with Glenognatha minuta Banks, 1898.
    Matched MeSH terms: Spiders/anatomy & histology; Spiders/classification*; Spiders/genetics; Spiders/growth & development
  19. Xu X, Liu F, Cheng RC, Chen J, Xu X, Zhang Z, et al.
    Proc Biol Sci, 2015 Jun 07;282(1808):20142486.
    PMID: 25948684 DOI: 10.1098/rspb.2014.2486
    Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39-58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4-24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies.
    Matched MeSH terms: Spiders/classification*; Spiders/genetics*
  20. Wang XQ, Wang GH, Zhu ZR, Tang QY, Hu Y, Qiao F, et al.
    Pest Manag Sci, 2017 Jun;73(6):1277-1286.
    PMID: 27739189 DOI: 10.1002/ps.4459
    BACKGROUND: Spiders are effective biological control agents in rice ecosystems, but the comparative study of predations among main spider species under field conditions has not been fully explored owing to a lack of practical methodology. In this study, more than 6000 spiders of dominant species were collected from subtropical rice ecosystems to compare their predations on Sogatella furcifera (Horváth) (white-backed planthopper, WBPH) using DNA-based gut content analysis.

    RESULTS: The positive rates for all spider taxa were closely related to prey densities, as well as their behaviors and niches. The relationships of positive rates to prey planthopper densities for Pardosa pseudoannulata (Böes. et Str.), Coleosoma octomaculata (Böes. et Str.), Tetragnatha maxillosa Thorell and Ummeliata insecticeps (Böes. et Str.) under field conditions could be described using saturated response curves. Quantitative comparisons of predations among the four spider species confirmed that P. pseudoannulata and C. octomaculata were more rapacious than U. insecticeps and T. maxillosa under field conditions. A comparison of ratio of spiders to WBPH and positive rates between fields revealed that biological control by spiders could be effectively integrated with variety resistance.

    CONCLUSION: Generalist spiders could follow up WBPH population timely, and assemblages of spiders coupled with variety resistance could effectively suppress WBPH population. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Spiders/classification; Spiders/physiology*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links