Displaying publications 1 - 20 of 109 in total

Abstract:
Sort:
  1. Ziarani GM, Mohajer F, Jamali SM, Ebrahim NA
    Curr Org Synth, 2020;17(8):610-624.
    PMID: 32703138 DOI: 10.2174/1872208314666200722161044
    Rose Oxide is a monoterpene along with cyclic ether used in fragrance to produce rosy notes, in general, there are 4 stereoisomeric structures of the Rose Oxide, which the cis-configured Rose Oxide has a very unique and strong note in perfumery. In this review, several approaches were reported on account of the Rose Oxide applied in perfumery from 1864 to 2019 via quantitative and qualitative approaches.
    Matched MeSH terms: Stereoisomerism
  2. Basri M, Th'ng BL, Razak CN, Salleh AB
    Ann N Y Acad Sci, 1998 Dec 13;864:192-7.
    PMID: 9928091
    Matched MeSH terms: Stereoisomerism
  3. Obaid A, Jamil AKM, Prabu S, Saharin SM, Mohamad S
    PMID: 32652287 DOI: 10.1016/j.saa.2020.118674
    Inclusion complexes of R-ketoprofen and S-ketoprofen enantiomers with β-cyclodextrin (β-CD) in aqueous solution were studied using various spectroscopic techniques such as Raman, FTIR, UV and fluorescence. The different relative intensities and characteristic band shifts of the two enantiomers from Raman spectra suggests different interaction when complexed with β-CD. Raman experiments revealed a noticeable diminishing of the CC vibration and ring deformation, which indicate the embedding of ketoprofen inside the β-CD cavity. It's revealed that distinct differences between R- and S-ketoprofen in the presence of β-CD at neutral pH. The stoichiometry ratio and binding constant of the inclusion complexes were calculated using Benesi-Hildebrand plot. Both enantiomers showed stoichiometry ratio of 1:1 inclusion complex with β-CD. The binding constant of R-ketoprofen (4088 M-1) is higher than S-ketoprofen (2547 M-1). These values indicated that β-CD formed inclusion complexes more preferentially with R-ketoprofen than S-ketoprofen. Results demonstrated that β-CD can be used as a promising chiral selector for ketoprofen enantiomers.
    Matched MeSH terms: Stereoisomerism
  4. Obaid A, Mohd Jamil AK, Saharin SM, Mohamad S
    Chirality, 2021 11;33(11):810-823.
    PMID: 34486177 DOI: 10.1002/chir.23354
    A simple, inexpensive but effective approach for visual chiral recognition of ketoprofen enantiomers was developed using L-cysteine capped silver nanoparticles (L-Cys-AgNPs) as a colorimetric sensor. Upon the addition of R-ketoprofen to L-Cys-AgNPs, rapid aggregation occurred, and the solution changed color from yellow to green. However, the presence of S-ketoprofen did not induce any color change. The results were characterized using UV-Vis, FESEM, FT-IR, SERS, and zeta potential measurements. The chiral assay described in this work is easily distinguished with the naked eyes or using a UV-Vis spectrometer. The sensor revealed a good linear response to ketoprofen enantiomers in the concentration range of 8.33-33.3 μM with a detection limit of 4.52 μM and relative standard deviation of 3.73%. The proposed method was utilized for the determination of ketoprofen racemic mixtures in water samples and commercial tablets. The method excels by its simplicity, low cost, and good availability of materials.
    Matched MeSH terms: Stereoisomerism
  5. Basar NB, Liu H, Negi D, Sirat HM, Morris GA, Thomas EJ
    Org Biomol Chem, 2012 Mar 7;10(9):1743-5.
    PMID: 22274635 DOI: 10.1039/c2ob06906g
    The stereoselective reaction of an allyl bromide with an aldehyde mediated by a low valency bismuth species was the key reaction in stereoselective syntheses of (4S,6R,8R,10S,16S)- and (4S,6R,8R,10S,16R)-4,6,8,10,16-pentamethyldocosanes. (13)C NMR data for these compounds confirmed that the cuticular hydrocarbon isolated from the cane beetle Antitrogus parvulus was the (4S,6R,8R,10S,16S)-stereoisomer.
    Matched MeSH terms: Stereoisomerism
  6. Usman A, Razak IA, Chantrapromma S, Ghorai SK, Mal D, Fun HK, et al.
    Acta Crystallogr C, 2001 Sep;57(Pt 9):1118-9.
    PMID: 11588390
    The title compound, C(19)H(16)O, crystallizes with two molecules of opposite chirality in the asymmetric unit. In both molecules, the naphthalene and cyclopentanone moieties are individually planar. The two cyclopentane rings adopt envelope conformations, while the cyclohexane ring adopts a boat conformation.
    Matched MeSH terms: Stereoisomerism
  7. Maryam M, Tan SL, Crouse KA, Mohamed Tahir MI, Chee HY
    Turk J Chem, 2020;44(5):1395-1409.
    PMID: 33488239 DOI: 10.3906/kim-2006-22
    A series of Schiff bases have been successfully synthesized through the acid-catalyzed condensation of S-substituted dithiocarbazates and three enantiomerically pure monoterpenes, (1 R )-(+)-camphor, (1 S )-(-)-camphor, (1 R )-(-)-camphorquinone, (1 S )-(+)-camphorquinone, ( R )-(-)-carvone and ( S )-(+)-carvone. Spectroscopic results revealed that the Schiff bases containing camphor or carvone likely adopted an E -configuration along the characteristic imine bond while those containing camphorquinone assumed a Z -configuration. The antidengue potential of these compounds was evaluated based on DENV 2 caused cytopathic effect (CPE) reduction-based in vitro evaluation. The compounds were validated through secondary foci forming unit reduction assay (FFURA). Compounds were also tested for their cytotoxicity against Vero cells. The compounds showed variable degrees of antiviral activity with the camphor compounds displaying the highest antidengue potential. The enantiomers of the compounds behaved almost similarly during the antiviral evaluation.
    Matched MeSH terms: Stereoisomerism
  8. Heng HL, Chee CF, Chin SP, Ouyang Y, Wang H, Buckle MJC, et al.
    MedChemComm, 2018 Mar 01;9(3):576-582.
    PMID: 30108948 DOI: 10.1039/c7md00629b
    In this study, the (S)-enantiomers of the aporphine alkaloids, nuciferine and roemerine, were prepared via a synthetic route involving catalytic asymmetric hydrogenation and both stereoisomers were evaluated in vitro for functional activity at human 5-HT2 and adrenergic α1 receptor subtypes using a transforming growth factor-α shedding assay. Both enantiomers of each of the compounds were found to act as antagonists at 5-HT2 and α1 receptors. (R)-roemerine was the most potent compound at 5-HT2A and 5-HT2C receptors (pKb = 7.8-7.9) with good selectivity compared to (S)-roemerine at these two receptors and compared to its activity at 5-HT2B, α1A, α1B and α1D receptors.
    Matched MeSH terms: Stereoisomerism
  9. Yan B, Huang ZA, Yahaya N, Chen DDY
    PMID: 32531643 DOI: 10.1016/j.jchromb.2020.122216
    Enantioselective analysis is critically important in the pharmaceutical and agricultural industries. However, most of the methods reported were developed for the analysis of pure racemates acquired from chemical synthesis or purification. Direct analysis of chiral enantiomers in complex matrices has rarely been reported. This work demonstrated capillary electrophoresis-mass spectrometry (CE-MS) for the enantioselective analysis of botanical drugs for the first time, using a widely used botanical drug, Corydalis Rhizoma, as an example. The method was used for the simultaneous enantioselective analysis of dl-tetrahydropalmatine and (RS)-tetrahydroberberine (canadine) in Corydalis Rhizoma extract. Using (2-hydroxypropyl)-β-cyclodextrin as the chiral selector, a partial filling technique was used to avoid signal suppression and contamination of the MS detector. Post column organic modifier was used to assist with ionization in the flow through microvial CE-MS interface, therefore, organic solvents was not used in the background electrolyte. The completely aqueous background electrolyte contributed to better chiral separations. The CE-MS method established here can directly determine the analytes in their complex matrix without any pre-purification steps, while also offering high sensitivity and low operational costs (including sample, chiral selector and solvent). In the method validation process, good linearity (r > 0.993), sensitivity and accuracy (recoveries within 89.1-110.0%) were demonstrated. The CE-MS technique was shown to be able to provide good selectivity for the simultaneous chiral separation of multiple pairs of enantiomers in complex matrices.
    Matched MeSH terms: Stereoisomerism
  10. Zhong X, Li Y, Zhang J, Han FS
    Org. Lett., 2015 Feb 6;17(3):720-3.
    PMID: 25602274 DOI: 10.1021/ol503734x
    The synthesis of a pentacyclic indole compound corresponding to the core structure of the misassigned indole alkaloid, tronoharine (1), is presented. The key reactions were a formal [3 + 3] cycloaddition of an indol-2-yl carbinol with an azadiene for the construction of the 6/5/6/6 tetracyclic system containing an all-carbon quaternary center and an intramolecular substitution reaction of an amine and a triflate for the creation of the bridged azepine ring. In addition, some other interesting transformations discovered during the synthetic studies are also discussed.
    Matched MeSH terms: Stereoisomerism
  11. Low YY, Gan CY, Kam TS
    J Nat Prod, 2014 Jun 27;77(6):1532-5.
    PMID: 24832351 DOI: 10.1021/np500289t
    Racemic andransinine (1), an indole alkaloid derivative obtained during isolation of alkaloids from Alstonia angustiloba and Kopsia pauciflora, was found to undergo spontaneous resolution when crystallized in EtOAc, forming racemic conglomerates (an equimolar mechanical mixture of enantiomerically pure individual crystals). X-ray analyses of the enantiomers (obtained from crystals from EtOAc solution and from chiral-phase HPLC) provided the absolute configuration of each enantiomer as (15R,16S,21R)-(+)-andransinine (1a or I+) and (15S,16R,21S)-(-)-andransinine (1b or I-).
    Matched MeSH terms: Stereoisomerism
  12. Zahid NI, Conn CE, Brooks NJ, Ahmad N, Seddon JM, Hashim R
    Langmuir, 2013 Dec 23;29(51):15794-804.
    PMID: 24274824 DOI: 10.1021/la4040134
    Synthetic branched-chain glycolipids are suitable as model systems in understanding biological cell membranes, particularly because certain natural lipids possess chain branching. Herein, four branched-chain glycopyranosides, namely, 2-hexyl-decyl-α-D-glucopyranoside (α-Glc-OC10C6), 2-hexyl-decyl-β-D-glucopyranoside (β-Glc-OC10C6), 2-hexyl-decyl-α-D-galactopyranoside (α-Gal-OC10C6), and 2-hexyl-decyl-β-D-galactopyranoside (β-Gal-OC10C6), with a total alkyl chain length of 16 carbon atoms have been synthesized, and their phase behavior has been studied. The partial binary phase diagrams of these nonionic surfactants in water were investigated by optical polarizing microscopy (OPM) and small-angle X-ray scattering (SAXS). The introduction of chain branching in the hydrocarbon chain region is shown to result in the formation of inverse structures such as inverse hexagonal and inverse bicontinuous cubic phases. A comparison of the four compounds showed that they exhibited different polymorphism, especially in the thermotropic state, as a result of contributions from anomeric and epimeric effects according to their stereochemistry. The neat α-Glc-OC10C6 compound exhibited a lamellar (Lα) phase whereas dry α-Gal-OC10C6 formed an inverse bicontinuous cubic Ia3d (QII(G)) phase. Both β-anomers of glucoside and galactoside adopted the inverse hexagonal phase (HII) in the dry state. Generally, in the presence of water, all four glycolipids formed inverse bicontinuous cubic Ia3d (QII(G)) and Pn3m (QII(D)) phases over wide temperature and concentration ranges. The formation of inverse nonlamellar phases by these Guerbet branched-chain glycosides confirms their potential as materials for novel biotechnological applications such as drug delivery and crystallization of membrane proteins.
    Matched MeSH terms: Stereoisomerism
  13. Sin LT, Bee ST, Tee TT, Kadhum AA, Ma C, Rahmat AR, et al.
    Carbohydr Polym, 2013 Nov 6;98(2):1281-7.
    PMID: 24053804 DOI: 10.1016/j.carbpol.2013.07.069
    In this study, the interactions of α-tocopherol (α-TOH) in PVOH-starch blends were investigated. α-TOH is an interacting agent possesses a unique molecule of polar chroman "head" and non-polar phytyl "tail" which can improve surface interaction of PVOH and starch. It showed favorable results when blending PVOH-starch with α-TOH, where the highest tensile strengths were achieved at 60 wt.% PVOH-starch blend for 1 phr α-TOH and 50 wt.% for 3 phr α-TOH, respectively. This due to the formation of miscible PVOH-starch as resulted by the compatibilizing effect of α-TOH. Moreover, the enthalpy of melting (ΔHm) of 60 wt.% PVOH-starch and 50 wt.% PVOH-starch added with 1 and 3 phr α-TOH respectively were higher than ΔHm of the neat PVOH-starch blends. The thermogravimetry analysis also showed that α-TOH can be used as thermal stabilizer to reduce weight losses at elevated temperature. The surface morphologies of the compatible blends formed large portion of continuous phase where the starch granules interacted well with α-TOH by acting as compatilizer to reduce surface energy of starch for embedment into PVOH matrix.
    Matched MeSH terms: Stereoisomerism
  14. Nge CE, Gan CY, Low YY, Thomas NF, Kam TS
    Org. Lett., 2013 Sep 20;15(18):4774-7.
    PMID: 23991636 DOI: 10.1021/ol4021404
    Two new indole alkaloids, voatinggine (1) and tabertinggine (2), which are characterized by previously unencountered natural product skeletons, were isolated from a Malayan Tabernaemontana species. The structures and absolute configuration of these alkaloids were determined using NMR and MS analysis, and X-ray diffraction analysis. A possible biogenetic pathway to these novel alkaloids from an iboga precursor, and via a common cleavamine-type intermediate, is presented.
    Matched MeSH terms: Stereoisomerism
  15. Hashim R, Mirzadeh SM, Heidelberg T, Minamikawa H, Yoshiaki T, Sugimura A
    Carbohydr Res, 2011 Dec 27;346(18):2948-56.
    PMID: 22088885 DOI: 10.1016/j.carres.2011.10.032
    Anomers and epimers α- and β-gluco and -galactosides are expected to behave differently. However, recent results on a series of Guerbet glycosides have indicated similar liquid crystal clearing temperatures for pure β-glucosides and the corresponding α-galactosides. This observation has led to speculation on similarities in the self-assembly interactions between the two systems, attributed to the trans-configuration of the 4-OH group and the hydrophobic aglycon. Previous simulations on related bilayers systems support this hypothesis, by relating this clearing transition temperature to intralayer (sugar-sugar) hydrogen bonding. In order to confirm the hypothesis, the comparison was expanded to include the cis-configurated pair, that is, α-gluco/β-galactoside. A set of α-configurated Guerbet glucosides as well as octyl α-galactoside were prepared and their thermotropic phase behavior studied. The data obtained enabled a complete comparison of the isomers of interest. While the results in general are in line with a pairing of the stereo-isomers according to the indicated cis/trans-configuration, differences within the pairs can be explained based on the direction of hydrogen bonds from a simple modeling study.
    Matched MeSH terms: Stereoisomerism
  16. Al Azzam KM, Saad B, Aboul-Enein HY
    Electrophoresis, 2010 Sep;31(17):2957-63.
    PMID: 20690150 DOI: 10.1002/elps.201000266
    Binding constants for the enantiomers of modafinil with the negatively charged chiral selector sulfated-β-CD (S-β-CD) using CE technique is presented. The calculations of the binding constants employing three different linearization plots (double reciprocal, X-reciprocal and Y-reciprocal) were performed from the electrophoretic mobility values of modafinil enantiomers at different concentrations of S-β-CD in the BGE. The highest inclusion affinity of the modafinil enantiomers were observed for the S-enantiomer-S-β-CD complex, in agreement with the computational calculations performed previously. Binding constants for each enantiomer-S-β-CD complex at different temperatures, as well as thermodynamic parameters for binding, were calculated. Host-guest binding constants using the double reciprocal fit showed better linearity (r(2)>0.99) at all temperatures studied (15-30°C) and compared with the other two fit methods. The linear van't Hoff (15-30°C) plot obtained indicated that the thermodynamic parameters of complexation were temperature dependent for the enantiomers.
    Matched MeSH terms: Stereoisomerism
  17. Wan Ibrahim WA, Warno SA, Aboul-Enein HY, Hermawan D, Sanagi MM
    Electrophoresis, 2009 Jun;30(11):1976-82.
    PMID: 19517438 DOI: 10.1002/elps.200800499
    An efficient method for the simultaneous enantioseparation of cyproconazole, bromuconazole, and diniconazole enantiomers was developed by CD-modified MEKC using a dual mixture of neutral CDs as chiral selector. Three neutral CDs namely hydroxypropyl-beta-CD, hydroxypropyl-gamma-CD, and gamma-CD were tested as chiral selectors at different concentrations ranging from 10, 20, 30 and 40 mM, but enantiomers of the studied fungicides were not completely separated. The best dual chiral recognition mode for the simultaneous separation of cyproconazole, bromuconazole, and diniconazole enantiomers was achieved with a mixture of 27 mM hydroxypropyl-beta-CD and 3 mM hydroxypropyl-gamma-CD in 25 mM phosphate buffer (pH 3.0) containing 40 mM SDS to which methanol-acetonitrile (10%:5% v/v) was added as organic modifiers. The best separation was based on the appearance of 10 peaks simultaneously, with good resolution (R(s) 1.1-15.9), and peak efficiency (N>200,000). Good repeatabilities in the migration time, peak area, and peak height were obtained in terms of RSD ranging from (0.72 to 1.06)%, (0.39 to 3.49)%, and (1.90 to 4.84)%, respectively.
    Matched MeSH terms: Stereoisomerism
  18. Lim KH, Sim KM, Tan GH, Kam TS
    Phytochemistry, 2009 Jun;70(9):1182-1186.
    PMID: 19643450 DOI: 10.1016/j.phytochem.2009.06.010
    Four tetracyclic oxindole alkaloids, 7(R)- and 7(S)-geissoschizol oxindole (1 and 2), 7(R),16(R)- and 7(S),16(R)-19(E)-isositsirikine oxindole (3 and 4), in addition to a taberpsychine derivative, N(4)-demethyltaberpsychine (5), were isolated from the Malayan Tabernaemontana corymbosa and the structures were established using NMR and MS analysis.
    Matched MeSH terms: Stereoisomerism
  19. Velu SS, Di Meo F, Trouillas P, Sancho-Garcia JC, Weber JF
    J Nat Prod, 2013 Apr 26;76(4):538-46.
    PMID: 23441649 DOI: 10.1021/np300705p
    Oligostilbenoids (e.g., ampelopsin F, viniferin, pallidol) result from homogeneous or heterogeneous coupling of monomeric stilbenoid units, leading to various chemical structures. Oligostilbenoid synthesis is regio- and stereocontrolled. To tackle this regio- and stereocontrol, a supramolecular chemistry approach is required that can be achieved by quantum chemistry. The stability of noncovalent π-stacks, formed between two stilbenoid units prior to oxidation, is accurately evaluated with density functional theory (DFT) including dispersive effects (within the DFT-D formalism). These noncovalent arrangements drive the regiocontrol. The rest of the chemical pathway is a succession of dearomatization and rearomatization stages. The thermodynamics and kinetics of the processes are calculated with classical hybrid functionals. This study allows discrimination between the two main possible chemical pathways, namely, radical-neutral and radical-radical reactions. The former appears more likely, thermodynamics and kinetics being in perfect agreement with the experimental 1:2 ratio obtained for ampelopsin F:pallidol analogues, respectively.
    Matched MeSH terms: Stereoisomerism
  20. Azhari NR, Yahaya N, Mohd Suah FBM, Prabu S, Yih Hui B, Shahriman MS, et al.
    Chirality, 2021 01;33(1):37-50.
    PMID: 33197086 DOI: 10.1002/chir.23285
    A chiral separation method coupled with capillary electrophoresis (CE) analysis for ketoconazole and miconazole enantiomers using chiral selectors such as β-cyclodextrin (β-CD) and hydroxypropyl-β-CD (HP-β-CD) was developed in this study, which included the optimisation, validation and application of the method on the antifungal cream samples. The formation of inclusion complex between the hosts (β-CD and HP-β-CD) and guests (ketoconazole and miconazole) were compared and analysed using ultraviolet-visible spectrophotometry, nuclear magnetic resonance (NMR) spectroscopy and molecular docking methods. Results from the study showed that in a concentration that ranged between 0.25 and 50 mg L-1 , the linear calibration curves of each enantiomer had a high coefficient of regression (R2 > 0.999), low limit of detection (0.075 mg L-1 ) and low limit of quantification (0.25 mg L-1 ). The relative standard deviation (RSD) of the intraday and interday analyses ranged from 0.79% to 8.01% and 3.30% to 11.43%, respectively, while the recoveries ranged from 82.0% to 105.7% (RSD < 7%, n = 3). The most probable structure of the inclusion complexes was proposed based on the findings from the molecular docking studies conducted using the PatchDock server.
    Matched MeSH terms: Stereoisomerism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links