METHODS: The liquids were adsorbed on microcrystalline cellulose, and all developed formulations were compressed using 10.5 mm shallow concave round punches.
RESULTS: The resulting tablets were evaluated for different quality-control parameters at pre- and postcompression levels. Simvastatin showed better solubility in a mixture of oils and Tween 60 (10:1). All the developed formulations showed lower self-emulsification time (˂200 seconds) and higher cloud point (˃60°C). They were free of physical defects and had drug content within the acceptable range (98.5%-101%). The crushing strength of all formulations was in the range of 58-96 N, and the results of the friability test were within the range of USP (≤1). Disintegration time was within the official limits (NMT 15 min), and complete drug release was achieved within 30 min.
CONCLUSION: Using commonly available excipients and machinery, SEDDS-based tablets with better dissolution profile and bioavailability can be prepared by direct compression. These S-SEDDSs could be a better alternative to conventional tablets of simvastatin.
AREAS COVERED: This review outlines the role of alginate for oral sustained release formulations. For better insights into its application in drug delivery, the mechanisms of drug release from alginate matrices are discussed alongside the alginate inherent properties and drug properties. Specifically, the influence of alginate properties and formulation components on the resultant alginate gel and subsequent drug release is reviewed. Modifications of the alginate to improve its properties in modulating drug release are also discussed.
EXPERT OPINION: Alginate-based matrix tablets is useful for sustaining drug release. As a nature-derived polymer, batch consistency and stability raise some concerns about employing alginate in formulations. Furthermore, the alginate gel properties can be affected by formulation components, pH of the dissolution environment and the tablet matrix micro-environment pH. Conscientious efforts are pivotal to addressing these formulation challenges to increase the utilization of alginate in oral solid dosage forms.
OBJECTIVE: This research was proposed to develop a co-processed excipient composed of xylitol, mannitol, and microcrystalline cellulose for the formulation of ODTs.
METHODS: A total of 11 formulations of co-processed excipients with different ratios of ingredients were prepared, which were then compressed into ODTs, and their characteristics were thoroughly examined. The primary focus was on evaluating the disintegration time and hardness of the tablets, as these factors are important in ensuring the ODTs meet the desired criteria. The model drug, Mirtazapine was then incorporated into the chosen optimized formulation.
RESULTS: The results showed that the formulation comprised of 10% xylitol, 10% mannitol and 80% microcrystalline cellulose demonstrated the fastest disintegration time (1.77 ± 0.119 min) and sufficient hardness (3.521 ± 0.143 kg) compared to the other formulations. Furthermore, the drug was uniformly distributed within the tablets and fully released within 15 min.
CONCLUSION: Therefore, the developed co-processed excipients show great potential in enhancing the functionalities of ODTs, offering a promising solution to improve the overall performance and usability of ODTs in various therapeutic applications.
PURPOSE OF THE STUDY: This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability.
MATERIALS AND METHODS: NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation.
RESULTS: The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed.
CONCLUSION: The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.