Displaying all 14 publications

Abstract:
Sort:
  1. Etti CJ, Yusof YA, Chin NL, Mohd Tahir S
    J Diet Suppl, 2017 Mar 04;14(2):132-145.
    PMID: 27487244
    The tableting properties of Labisia pumila herbal powder, which is well known for its therapeutic benefits was investigated. The herbal powder was compressed into tablets using a stainless steel cylindrical uniaxial die of 13-mm- diameter with compaction pressures ranging from 7 to 25 MPa. Two feed weights, 0.5 and 1.0 g were used to form tablets. Some empirical models were used to describe the compressibility behavior of Labisia pumila tablets. The strength and density of tablets increased with increase in compaction pressure and resulted in reduction in porosity of the tablets. Smaller feeds, higher forces and increase in compaction pressure, contributed to more coherent tablets. These findings can be used to enhance the approach and understanding of tableting properties of Labisia pumila herbal powder tablets.
    Matched MeSH terms: Tablets/chemistry*
  2. Usuda S, Masukawa N, Leong KH, Okada K, Onuki Y
    Chem Pharm Bull (Tokyo), 2021;69(9):896-904.
    PMID: 34470954 DOI: 10.1248/cpb.c21-00427
    This study investigated the effect of manufacturing process variables of mini-tablets, in particular, the effect of process variables concerning fluidized bed granulation on tablet weight variation. Test granules were produced with different granulation conditions according to a definitive screening design (DSD). The five evaluated factors assigned to DSD were: the grinding speed of the sample mill at the grinding process of the active pharmaceutical ingredient (X1), microcrystalline cellulose content in granules (X2), inlet air temperature (X3), binder concentration (X4) and the spray speed of the binder solution (X5) at the granulation process. First, the relationships between the evaluated factors and the granule properties were investigated. As a result of the DSD analysis, the mode of action of granulation parameters on the granule properties was fully characterized. Subsequently, the variation in tablet weight was examined. In addition to mini-tablets (3 mm diameter), this experiment assessed regular tablets (8 mm diameter). From the results for regular tablets, the variation in tablet weight was affected by the flowability of granules. By contrast, regarding the mini-tablets, no significant effect on the variation of tablet weight was found from the evaluated factors. From this result, this study further focused on other important factors besides the granulation process, and then the effect of the die-hole position of the multiple-tip tooling on tablet weight variation was proven to be significant. Our findings provide a better understanding of manufacturing mini-tablets.
    Matched MeSH terms: Tablets/chemistry
  3. Bashir MA, Khan A, Shah SI, Ullah M, Khuda F, Abbas M, et al.
    Drug Des Devel Ther, 2023;17:261-272.
    PMID: 36726738 DOI: 10.2147/DDDT.S377686
    BACKGROUND: Self-emulsifying drug-delivery systems (SEDDSs) are designed to improve the oral bioavailability of poorly water-soluble drugs. This study aimed at formulating and characterization of SEDDS-based tablets for simvastatin using castor and olive oils as solvents and Tween 60 as surfactant.

    METHODS: The liquids were adsorbed on microcrystalline cellulose, and all developed formulations were compressed using 10.5 mm shallow concave round punches.

    RESULTS: The resulting tablets were evaluated for different quality-control parameters at pre- and postcompression levels. Simvastatin showed better solubility in a mixture of oils and Tween 60 (10:1). All the developed formulations showed lower self-emulsification time (˂200 seconds) and higher cloud point (˃60°C). They were free of physical defects and had drug content within the acceptable range (98.5%-101%). The crushing strength of all formulations was in the range of 58-96 N, and the results of the friability test were within the range of USP (≤1). Disintegration time was within the official limits (NMT 15 min), and complete drug release was achieved within 30 min.

    CONCLUSION: Using commonly available excipients and machinery, SEDDS-based tablets with better dissolution profile and bioavailability can be prepared by direct compression. These S-SEDDSs could be a better alternative to conventional tablets of simvastatin.

    Matched MeSH terms: Tablets/chemistry
  4. Veronica N, Heng PWS, Liew CV
    Mol Pharm, 2023 Feb 06;20(2):1072-1085.
    PMID: 36480246 DOI: 10.1021/acs.molpharmaceut.2c00812
    The stability of a moisture-sensitive drug in tablet formulations depends particularly on the environment's relative humidity (RH) and the products' prior exposure to moisture. This study was designed to understand drug stability in relation to the moisture interaction of the excipients, moisture history of the tablets, and RH of the environment. The stability study was performed on tablets containing acetylsalicylic acid (ASA), formulated with common pharmaceutical excipients like native maize starch, microcrystalline cellulose (MCC), partially pregelatinized maize starch (PGS), dicalcium phosphate dihydrate (DCP), lactose, and mannitol. The tablets were subjected to storage conditions with RH cycling alternating between 53% and 75%. Results were also compared to tablets stored at a constant RH of 53% or 75%. The excipients demonstrated marked differences in their interactions with moisture. They could be broadly grouped as excipients with RH-dependent moisture content (native maize starch, MCC, and PGS) and RH-independent moisture content (DCP, lactose, and mannitol). As each excipient interacted differently with moisture, degradation of ASA in the tablets depended on the excipients' ability to modulate the moisture availability for degradation. The lowest ASA degradation was observed in tablets formulated with low moisture content water-soluble excipients, such as lactose and mannitol. The impact of RH cycling on ASA stability was apparent in tablets containing native maize starch, MCC, PGS, or DCP. These findings suggested that the choice of excipients influences the effect of moisture history on drug stability. The results from studies investigating moisture interaction of excipients and drug stability are valuable to understanding the inter-relationship between excipients, moisture history, and drug stability.
    Matched MeSH terms: Tablets/chemistry
  5. Veronica N, Heng PWS, Liew CV
    Expert Opin Drug Deliv, 2023 Jan;20(1):115-130.
    PMID: 36503355 DOI: 10.1080/17425247.2023.2158183
    INTRODUCTION: As a nature-derived polymer with swelling and gelling properties, alginate has found wide biopharma-relevant applications. However, there is comparatively limited attention on alginate in tablet formulations. Therefore, this review aimed to provide an overview of the applications of alginate in solid dosage form formulations.

    AREAS COVERED: This review outlines the role of alginate for oral sustained release formulations. For better insights into its application in drug delivery, the mechanisms of drug release from alginate matrices are discussed alongside the alginate inherent properties and drug properties. Specifically, the influence of alginate properties and formulation components on the resultant alginate gel and subsequent drug release is reviewed. Modifications of the alginate to improve its properties in modulating drug release are also discussed.

    EXPERT OPINION: Alginate-based matrix tablets is useful for sustaining drug release. As a nature-derived polymer, batch consistency and stability raise some concerns about employing alginate in formulations. Furthermore, the alginate gel properties can be affected by formulation components, pH of the dissolution environment and the tablet matrix micro-environment pH. Conscientious efforts are pivotal to addressing these formulation challenges to increase the utilization of alginate in oral solid dosage forms.

    Matched MeSH terms: Tablets/chemistry
  6. Loke YH, Chew YL, Janakiraman AK, Lee SK, Uddin ABMH, Goh CF, et al.
    Drug Dev Ind Pharm, 2024 Jan;50(1):36-44.
    PMID: 38149637 DOI: 10.1080/03639045.2023.2294095
    INTRODUCTION: Orally disintegrating tablets (ODTs) are designed to dissolve in the oral cavity within 3 min, providing a convenient option for patients as they can be taken without water. Direct compression is the most common method used for ODTs formulations. However, the availability of single composite excipients with desirable characteristics such as good compressibility, fast disintegration, and a good mouthfeel suitable for direct compression is limited.

    OBJECTIVE: This research was proposed to develop a co-processed excipient composed of xylitol, mannitol, and microcrystalline cellulose for the formulation of ODTs.

    METHODS: A total of 11 formulations of co-processed excipients with different ratios of ingredients were prepared, which were then compressed into ODTs, and their characteristics were thoroughly examined. The primary focus was on evaluating the disintegration time and hardness of the tablets, as these factors are important in ensuring the ODTs meet the desired criteria. The model drug, Mirtazapine was then incorporated into the chosen optimized formulation.

    RESULTS: The results showed that the formulation comprised of 10% xylitol, 10% mannitol and 80% microcrystalline cellulose demonstrated the fastest disintegration time (1.77 ± 0.119 min) and sufficient hardness (3.521 ± 0.143 kg) compared to the other formulations. Furthermore, the drug was uniformly distributed within the tablets and fully released within 15 min.

    CONCLUSION: Therefore, the developed co-processed excipients show great potential in enhancing the functionalities of ODTs, offering a promising solution to improve the overall performance and usability of ODTs in various therapeutic applications.

    Matched MeSH terms: Tablets/chemistry
  7. Mahesparan VA, Bin Abd Razak FS, Ming LC, Uddin AH, Sarker MZI, Bin LK
    Int J Pharm Compd, 2020 3 21;24(2):148-155.
    PMID: 32196477
    Orodispersible tablets disintegrate rapidly (within 3 minutes) in the oral cavity and release the medicament before swallowing. The mode of disintegrant addition might affect the properties of orodispersible tablets. The objective of this study was to formulate and evaluate orodispersible tablets by studying different modes of disintegration addition with varying concentrations of disintegrants. The wet granulation method was used to produce the orodispersible tablets. Two methods of disintegration addition were compared (i.e., intragranular, extragranular). Three disintegrants (i.e., cornstarch, sodium starch glycolate, crospovidone) were used at three levels (5%, 10%, and 15%) in the study. The formulations were tested for the powder flowability (angle of repose) and characterized physically (hardness, weight, thickness, friability, disintegration time). The mangosteen pericarp extract was used as a model active pharmaceutical ingredient to be incorporated into the optimum formulation. It was observed that the extragranular method produced granules with better flowability compared to that of the intragranular method. Crospovidone was found as the most efficient disintegrant among the three. The optimum formulation selected was one with the highest concentration of crospovidone (15%), which showed the fastest disintegration time. The mode of disintegrant addition into the orodispersible tablets formulation was found to show a marked difference in the disintegration, as well as other physical characteristics of the orodispersible tablets where the extragranular mode of addition showed better property, which caused the orodispersible tablets to disintegrate the fastest.
    Matched MeSH terms: Tablets/chemistry*
  8. Hameed HA, Khan S, Shahid M, Ullah R, Bari A, Ali SS, et al.
    Drug Des Devel Ther, 2020;14:27-41.
    PMID: 32021089 DOI: 10.2147/DDDT.S232111
    BACKGROUND: Naproxen (NP) is a non-steroidal anti-inflammatory drug with poor aqueous solubility and low oral bioavailability, which may lead to therapeutic failure. NP causes crucial GIT irritation, bleeding, and peptic and duodenal ulcers.

    PURPOSE OF THE STUDY: This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability.

    MATERIALS AND METHODS: NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation.

    RESULTS: The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed.

    CONCLUSION: The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.

    Matched MeSH terms: Tablets/chemistry
  9. Elbashir AA, Saad B, Ali AS, Saleh MI, Aboul-Enein HY
    Biomed Chromatogr, 2009 Mar;23(3):295-301.
    PMID: 18816453 DOI: 10.1002/bmc.1113
    A capillary electrophoretic (CE) method for the baseline separation of the enantiomers of primaquine diphosphate (PQ) and quinocide (QC) (a major contaminant) in pharmaceutical formulations is proposed. Both components were separated under the following conditions: 50 mm tris phosphate buffer (pH 3.0) containing 15 mm hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) as background electrolyte; applied voltage, 16 kV; capillary temperature, 25 degrees C; detection wavelength, 254 nm; hydrostatic injection, 10 s. The separations were conducted using a 35 cm length and 50 microm i.d. uncoated fused silica capillary column. Under the optimized conditions, the components were successfully separated in about 5 min. Intraday precision of migration time and corrected peak areas when expressed as relative standard deviation ranged from 0.17 to 0.45 and 2.60 to 3.94%, respectively, while the interday precision ranged from 2.59 to 4.20 and 3.15 to 4.21%, respectively. After the validation exercise, the proposed method was applied for the determination of QC impurity in PQ formulations.
    Matched MeSH terms: Tablets/chemistry
  10. Elbashir AA, Saad B, Ali AS, Saleh MI, Aboul-Enein HY
    Biomed Chromatogr, 2009 May;23(5):464-71.
    PMID: 19016231 DOI: 10.1002/bmc.1137
    A capillary zone electrophoretic method has been developed and validated for the determination of the impurity quinocide (QC) in the antimalarial drug primaquine (PQ). Different buffer additives such as native cyclodextrins and crown ethers were evaluated. Promising results were obtained when either beta-cyclodextrin (beta-CD) or 18-crown-6 ether (18C6) were used. Their separation conditions such as type of buffer and its pH, buffer additive concentration, applied voltage capillary temperature and injection time were optimized. The use of 18C6 offers slight advantages over beta-CD such as faster elution times and improved resolution. Nevertheless, migration times of less than 5 min and resolution factors (R(s)) in the range of 2-4 were obtained when both additives were used. The method was validated with respect to selectivity, linearity, limits of detection and quantitation, analytical precision (intra- and inter-day variability) and repeatability. Concentrations of 2.12 and 2.71% (w/w) of QC were found in pharmaceutical preparations of PQ from two different manufacturers. A possible mechanism for the successful separation of the isomers is also discussed.
    Matched MeSH terms: Tablets/chemistry*
  11. Billa N, Yuen KH
    AAPS PharmSciTech, 2000;1(4):E30.
    PMID: 14727895
    The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different amounts of water were measured in water under a magnifying lens. Granules were thermally treated in an oven at 60 degrees C, 70 degrees C, and 80 degrees C to study the effects of elevated temperatures on drug release from xanthan gum matrices. Granules from the pilot scale formulations were bulkier compared to their laboratory scale counterparts, resulting in more porous, softer tablets. Drug release was linear from xanthan gum matrices prepared at the laboratory scale and pilot scales; however, release was faster from the pilot scales. Thermal treatment of the granules did not affect the swelling index and rate of drug release from tablets in both the pilot and laboratory scale proceedings. On the other hand, the release from both proceedings was affected by the amount of water used for granulation and the speed of the impeller during granulation. The data suggest that processing variables that affect the degree of wetness during granulation, such as increase in impeller speed and increase in amount of water used for granulation, also may affect the swelling index of xanthan gum matrices and therefore the rate of drug release.
    Matched MeSH terms: Tablets/chemistry
  12. Meka VS, Nali SR, Songa AS, Kolapalli VR
    AAPS PharmSciTech, 2012 Dec;13(4):1451-64.
    PMID: 23090110 DOI: 10.1208/s12249-012-9873-5
    The main objective of the present study is the physicochemical characterization of naturally available Terminalia catappa gum (Badam gum [BG]) as a novel pharmaceutical excipient and its suitability in the development of gastroretentive floating drug delivery systems (GRFDDS) to retard the drug for 12 h when the dosage form is exposed to gastrointestinal fluids in the gastric environment. As BG was being explored for the first time for its pharmaceutical application, physicochemical, microbiological, rheological, and stability studies were carried out on this gum. In the present investigation, the physicochemical properties, such as micromeritic, rheological, melting point, moisture content, pH, swelling index, water absorption, and volatile acidity, were evaluated. The gum was characterized by scanning electron microscopy, differential scanning calorimetry (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Gastroretentive floating tablets of BG were prepared with the model drug propranolol HCl by direct compression methods. The prepared tablets were evaluated for all their physicochemical properties, in vitro buoyancy, in vitro drug release, and rate order kinetics. PBG 04 was selected as an optimized formulation based on its 12-h drug release and good buoyancy characteristics. The optimized formulation was characterized with FTIR, DSC, and PXRD studies, and no interaction between the drug and BG was found. Thus, the study confirmed that BG might be used in the gastroretentive drug delivery system as a release-retarding polymer.
    Matched MeSH terms: Tablets/chemistry
  13. Kadivar A, Kamalidehghan B, Javar HA, Davoudi ET, Zaharuddin ND, Sabeti B, et al.
    PLoS One, 2015;10(6):e0126874.
    PMID: 26035710 DOI: 10.1371/journal.pone.0126874
    Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets.
    Matched MeSH terms: Tablets/chemistry*
  14. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
    Matched MeSH terms: Tablets/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links