Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Rajendran MAP, Allada R, Sajid SS
    Recent Adv Drug Deliv Formul, 2021;15(1):15-36.
    PMID: 34602030 DOI: 10.2174/2667387815666210203151209
    Co-crystal is an attractive alternative and a new class of solid forms because that can be engineered to have desired physicochemical properties. Co-crystals have gained considerable attention from the generic pharmaceutical industry after the USFDA released its finalized guidlines in the year 2018 on the regulatory classification of co-crystals. In this review, we discussed how co-crystals could be explored as a potential alternative solid form for the development of a generic product that meets the legal, regulatory, and bioequivalence requirements. In the contents, we discussed in detail concepts such as the selection of coformers, various ways of making co-crystals, the strategy of characterization to discriminate between co-crystal and salt, polymorphism in co-crystals, the aspects of intellectual property and, finally, the regulatory aspects of co-crystals.
    Matched MeSH terms: Therapeutic Equivalency
  2. Loh GOK, Wong EYL, Tan YTF, Wee HC, Ng RS, Syed HK, et al.
    Drug Dev Ind Pharm, 2022 Sep;48(9):470-479.
    PMID: 36111737 DOI: 10.1080/03639045.2022.2125985
    OBJECTIVE: The study aimed to develop a rapid, simple and sensitive LC/ESI-MS/MS method to measure prazosin concentration in human plasma and apply bedside sampling in bioequivalence study of two prazosin tablets to resolve the adverse effect of orthostatic hypotension.

    SIGNIFICANCE: The LC/ESI-MS/MS prazosin method was highly sensitive and selective. Bedside sampling reduced the orthostatic hypotension incidence and subject dropout rate.

    METHODS: After sample preparation, prazosin and terazosin (IS) were detected on mass spectrometer operating in multiple reaction monitoring mode using positive ionization. Mobile phase flow rate was set at 0.40 mL/min with sample run time of 1.75 min. The bioanalytical method was validated as per EMEA and FDA guidelines. Bedside sampling was performed in bioequivalence study for the first 4 h after dosing. The three primary pharmacokinetic parameters, Cmax, AUC0-t and AUC0-∞ and 90% confidence interval were determined.

    RESULTS: The small injection volume of 1 μL minimized instrumentation contamination and prolonged the analytical column lifespan. Linearity was obtained between 0.5 and 30.0 ng/mL, with coefficient of determination, r2 ≥ 0.99. The mean extraction recovery of prazosin and IS was >92%, with precision value (CV, %) ≤ 10.3%. Only two orthostatic hypotension adverse events were reported. The two prazosin formulations were found to be bioequivalent.

    CONCLUSION: The LC/ESI-MS/MS method has shown robustness and reliability exemplified by the incurred sample re-analysis result. Bedside sampling should be proposed for bioequivalence or pharmacokinetic studies of drugs demonstrating adverse event of orthostatic hypotension.

    Matched MeSH terms: Therapeutic Equivalency
  3. Lv X, Zhong G, Yao H, Wu J, Ye S
    Int J Clin Pharmacol Ther, 2021 Nov;59(11):725-733.
    PMID: 34448694 DOI: 10.5414/CP203986
    OBJECTIVE: An earlier three-way crossover study evaluating bioequivalence of 3 cefalexin formulations (capsule for reference, capsule and tablet for test) in healthy subjects in Malaysia showed that the intra-individual coefficients of variation were 9.25% for AUC0-t, 9.54% for AUC0-∞, and 13.90% for Cmax. It is preliminarily stated that cefalexin is not a high-variation product. The here-presented clinical study in China was carried out to analyze the pharmacokinetic properties of two preparations in fasting and postprandial condition to assess the bioequivalence of the test preparation and reference preparation when administered on a fasting and postprandial basis in healthy Chinese subjects and to observe the safety of the test preparation and reference preparation in healthy Chinese subjects.

    MATERIALS AND METHODS: In this trial, a total of 56 eligible subjects were randomly assigned to the fasting group and the postprandial group. The two groups were given 250 mg of the test and reference preparation, respectively. Liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was applied to determine the plasma concentration of cefalexin. PhoenixWinNonlin software (V7.0) was used to calculate the pharmacokinetic parameters of cefalexin using the non-compartmental model (NCA), and the bioequivalence and safety results were calculated by SAS (V9.4) software.

    RESULTS: The main pharmacokinetic parameters of the test and reference preparations were as follows, the fasting group: Cmax 12.59 ± 2.65 μg/mL, 12.72 ± 2.28 μg/mL; AUC0-8h 20.43 ± 3.47 h×μg/mL, 20.66 ± 3.38 h×μg/mL; AUC0-∞ 20.77 ± 3.53 h×μg/mL, 21.02 ± 3.45 h×μg/mL; the postprandial group: Cmax 5.25 ± 0.94 μg/mL, 5.23 ± 0.80 μg/mL; AUC0-10h 16.92 ± 2.03 h×μg/mL, 17.09 ± 2.31 h×μg/mL; AUC0-∞ 17.33 ± 2.09 h×μg/mL, 17.67 ± 2.45 h×μg/mL.

    CONCLUSION: The 90% confidence intervals of geometric mean ratios of test preparation and reference preparation were calculated, and the 90% confidence intervals of geometric mean ratios of Cmax, AUC0-10h, and AUC0-∞ were within the 80.00% ~ 125.00% range in both groups. Both Cmax and AUC met the pre-determined criteria for assuming bioequivalence. The test and reference products were bioequivalent after administration under fasting as well as under fed conditions in healthy Chinese subjects. This study may suggest that successful generic versions of cefalexin not only guarantee the market supply of such drugs but can also improve the safety and effectiveness and quality controllability of cefalexin through a new process and a new drug composition ratio.

    Matched MeSH terms: Therapeutic Equivalency
  4. Loh GOK, Wong EYL, Tan YTF, Heng SC, Saaid M, Cheah KY, et al.
    Molecules, 2022 Sep 04;27(17).
    PMID: 36080473 DOI: 10.3390/molecules27175706
    Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) used to treat pain and inflammation. The objective of the current study was to develop a sensitive, fast and high-throughput HPLC-ESI-MS/MS method to measure etoricoxib levels in human plasma using a one-step methanol protein precipitation technique. A tandem mass spectrometer equipped with an electrospray ionization (ESI) source operated in a positive mode and multiple reaction monitoring (MRM) were used for data collection. The quantitative MRM transition ions were m/z 359.15 > 279.10 and m/z 363.10 > 282.10 for etoricoxib and IS. The linear range was from 10.00 to 4000.39 ng/mL and the validation parameters were within the acceptance limits of the European Medicine Agency (EMA) and Food and Drug Analysis (FDA) guidelines. The present method was sensitive (10.00 ng/mL with S/N > 40), simple, selective (K prime > 2), and fast (short run time of 2 min), with negligible matrix effect and consistent recovery, suitable for high throughput analysis. The method was used to quantitate etoricoxib plasma concentrations in a bioequivalence study of two 120 mg etoricoxib formulations. Incurred sample reanalysis results further supported that the method was robust and reproducible.
    Matched MeSH terms: Therapeutic Equivalency
  5. Chang CT, Ang JY, Wong JM, Tan SS, Chin SK, Lim AB, et al.
    Med J Malaysia, 2020 05;75(3):286-291.
    PMID: 32467546
    AIM: This study is conducted to compare the pharmacokinetic profiles of two fixed dose combination of metformin/glibenclamide tablets (500mg/5 mg per tablet).

    MATERIALS AND METHODS: This is a single-center, single-dose, open-label, randomized, 2-treatment, 2-sequence and 2- period crossover study with a washout period of 7 days. All 28 adult male subjects were required to fast for at least 10 hours prior to drug administration and they were given access to water ad libitum during this period. Thirty minutes prior to dosing, all subjects were served with a standardized high-fat and high-calorie breakfast with a total calorie of 1000 kcal which was in accordance to the EMA Guideline on the Investigation of Bioequivalence. Subsequently, subjects were administered either the test or reference preparation with 240mL of plain water in the first trial period. During the second trial period, they received the alternate preparation. Plasma levels of glibenclamide and metformin were analysed separately using two different high performance liquid chromatography methods.

    RESULTS: The 90% confidence interval (CI) for the ratio of the AUC0-t, AUC0-∞, and Cmax of the test preparation over those of the reference preparation were 0.9693-1.0739, 0.9598- 1.0561 and 0.9220 - 1.0642 respectively. Throughout the study period, no serious drug reaction was observed. However, a total of 26 adverse events (AE)/side effects were reported, including 24 that were definitely related to the study drugs, namely giddiness (n=17), while diarrheoa (n=3), headache (n=2) and excessive hunger (n=2) were less commonly reported by the subjects.

    CONCLUSION: It can be concluded that the test preparation is bioequivalent to the reference preparation.

    Matched MeSH terms: Therapeutic Equivalency*
  6. Juhlin K, Karimi G, Andér M, Camilli S, Dheda M, Har TS, et al.
    Drug Saf, 2015 Apr;38(4):373-82.
    PMID: 25687792 DOI: 10.1007/s40264-015-0271-2
    Substandard medicines, whether the result of intentional manipulation or lack of compliance with good manufacturing practice (GMP) or good distribution practice (GDP), pose a significant potential threat to patient safety. Spontaneous adverse drug reaction reporting systems can contribute to identification of quality problems that cause unwanted and/or harmful effects, and to identification of clusters of lack of efficacy. In 2011, the Uppsala Monitoring Centre (UMC) constructed a novel algorithm to identify reporting patterns suggestive of substandard medicines in spontaneous reporting, and applied it to VigiBase(®), the World Health Organization's global individual case safety report database. The algorithm identified some historical clusters related to substandard products, which were later able to be confirmed in the literature or by contact with national centres (NCs). As relevant and detailed information is often lacking in the VigiBase reports but might be available at the reporting NC, further evaluation of the algorithm was undertaken with involvement from NCs.
    Matched MeSH terms: Therapeutic Equivalency
  7. Tassaneeyakul W, Kumar S, Gaysonsiri D, Kaewkamson T, Khuroo A, Tangsucharit P, et al.
    Int J Clin Pharmacol Ther, 2010 Sep;48(9):614-20.
    PMID: 20860915
    OBJECTIVES: To compare the bioavailability of two risperidone orodispersible tablet products, Risperidone 1 mg Mouth dissolving tablet, Ranbaxy (Malaysia) Sdn. Bhd., Malaysia, as a test product and Risperdal 1 mg Quicklet, Janssen Ortho LLC, Gurabo, Puerto Rico, as a reference product, in healthy male volunteers under fasting condition.

    MATERIALS AND METHODS: A randomized, 2-treatment, 2-period, 2-sequence, single dose, crossover with a washout period of 2 weeks, was conducted in 24 healthy Thai male volunteers. Blood samples were collected at 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 24, 36, 48, 72 and 96 h following drug administration. Plasma concentrations of risperidone and 9-hydroxyrisperidone were determined using a validated LC-MS-MS method. The pharmacokinetic parameters of risperidone and 9-hydroxyrisperidone were determined using a non-compartmental model.

    RESULTS: The geometric means ratios (%) and 90% confidence interval (CI) of the test and reference products for the log-transformed pharmacokinetic parameters, Cmax, AUC0-t and AUC0-inf of risperidone were 104.49 % (92.79% - 117.66%), 100.96 % (92.15% - 110.61 %) and 97.99 % (90.72% - 105.85%). The 90% CI of geometric means ratios of the test and reference products for the log-transformed pharmacokinetic parameters, Cmax, AUC0-t and AUC0-inf of 9-hydroxyrisperidone were 97.00%, 96.97% and 97.49%.

    CONCLUSIONS: The 90% CI for the geometric means ratios (test/reference) of the log-trasformed Cmax, AUC0-t and AUC0-inf of risperidone and its major active metabolite were within the bioequivalence acceptance criteria of 80% - 125% of the US-FDA.

    Matched MeSH terms: Therapeutic Equivalency
  8. Hassali MA, Kong DC, Stewart K
    Med Educ, 2007 Jul;41(7):703-10.
    PMID: 17614892
    To ascertain any differences in knowledge and perceptions of generic medicines between senior (final year) medical students and pharmacy pre-registrants in Australia.
    Matched MeSH terms: Therapeutic Equivalency
  9. Yuen KH, Wong JW, Yap SP, Billa N
    Int J Clin Pharmacol Ther, 2001 Jan;39(1):37-40.
    PMID: 11204936
    OBJECTIVE: The aim of the present communication is to provide information regarding the intrasubject coefficent of variation obtained from 30 bioequivalence studies covering 16 drugs which can be used for estimation of sample size. Additionally, an attempt was also made to estimate the test power of each of the studies conducted.

    METHODS: The intrasubject coefficient of variation was estimated from the residual mean square error obtained from analysis of variance of the parameters AUC0-infinity, Cmax and Cmax/AUC0-infinity after logarithmic transformation. The test power in the analyses of the above parameters was subsequently estimated using nomograms provided by Diletti et al. [1991].

    RESULTS AND CONCLUSION: Thirty products covering 16 drugs were studied in which 22 were immediate-release (including one dispersible tablet) and 8 were sustained-release formulations. The intrasubject coefficient of variation for the parameter AUC0-infinity was smaller than Cmax, and hence considerably more studies were able to attain a power of greater than 80% using 12 volunteers for the AUC0-infinity, compared to the Cmax. However, the variability in the Cmax could be reduced by using the parameter Cmax/ AUC0-infinity, and thus, provide a more realistic estimation of sample size, since the latter reflects only the rate of absorption and not both the rate and extent as in the case of Cmax [Endrenyi et al. 1991].

    Matched MeSH terms: Therapeutic Equivalency
  10. Loh GOK, Wong EYL, Tan YTF, Wee HC, Ng RS, Lee CY, et al.
    J Pharm Biomed Anal, 2021 Feb 05;194:113758.
    PMID: 33248861 DOI: 10.1016/j.jpba.2020.113758
    A simple, rapid, sensitive, and reproducible LC-MS/MS method was developed for simultaneous quantification of flavoxate and 3-methyl-flavone-8-carboxylic (MFCA) in human plasma, using diphenhydramine HCl as internal standard (IS). The chromatographic separation was achieved using Agilent Poroshell 120 EC-C18 - Fast LC column (100 × 2.1mmID, 2.7 μm) fitted with UHPLC Guard Poroshell 120 EC-C18 (5 × 2.1 mmID, 2.7 μm). The mobile phase consisted of 0.1 % v/v formic acid and acetonitrile (30:70, v/v) run at a flow rate of 0.40 mL/min. The standard calibration curve was linear over the concentration range of 2.00 - 2,000.31 ng/mL and 240.00 - 24,000.04 ng/mL for flavoxate and MFCA. For flavoxate and MFCA, the within-run precision was 0.81-6.67 % and 1.68-4.37 %, while accuracy was 100.21-108.25 % and 103.99-110.28 %. The between-run precision was 2.01-9.14 % and 2.31-11.11 %, and accuracy was 96.09-103.33 % and 102.37-109.52 %. The extended run precision was 7.78-11.04 % and 2.22-3.33 %, while accuracy was 100.72-101.88 % and 102.34-105.60 %. Flavoxate and MFCA in plasma were stable 4 h at bench top (short term), 24 h in autosampler and instrumentation room (post-preparative), after 7 freeze-thaw cycles, and 89 days in the freezer. Both analytes and IS stock solutions were stable for 31 days when kept at room temperature (25 ± 4 °C) and refrigerated (2-8 °C). The validated method was successfully applied to a bioequivalence study of two flavoxate formulations involving 24 healthy volunteers.
    Matched MeSH terms: Therapeutic Equivalency
  11. Izadi E, Afshan G, Patel RP, Rao VM, Liew KB, Meor Mohd Affandi MMR, et al.
    Front Pharmacol, 2019;10:881.
    PMID: 31474853 DOI: 10.3389/fphar.2019.00881
    Counterfeit and substandard medicines are recognized as one of serious threats to public health. The product quality of antibacterial medicine will compromise patients' recovery and increase the chance of antibacterial resistance. The review aims to provide a summary of low quality levofloxacin issues and the risk factors as well as suggesting the aspects of product quality that need to be regulated strictly. Quality of the active ingredient, levofloxacin, has an important role to contribute to successful therapy. The poor quality of raw material, directly and indirectly, causes treatment failure as the presence of insufficient dose, mislabeled content, and poor dissolution characteristics can lead to lower bioavailability. Identifying and reporting these factors can potentially help in improving the quality of drug marketed in various developing countries and may also reduce the incidences of treatment failure. Dissolution test is used for testing the dissolution profiles and the rate of drug release from solid formulation such as oral formulations, thus providing information regarding the in vivo performance of a formulation and its bioequivalence. On the other hand, quality-testing procedures are used for comparing the quality of products.
    Matched MeSH terms: Therapeutic Equivalency
  12. Khwairakpam G, Burry J
    Curr Opin HIV AIDS, 2019 01;14(1):1-6.
    PMID: 30480583 DOI: 10.1097/COH.0000000000000514
    PURPOSE OF REVIEW: With increasing availability of generic direct-acting antivirals (DAAs) and associated price reductions, various governments, multilateral institutions, and donors have started providing testing and treatment for hepatitis C virus (HCV) infection. More data on the quality of these generic medicines and on cost-effectiveness of their use are becoming widely available. This review seeks to describe some of the treatment programs for HCV that are evolving in Cambodia, India, Indonesia, Malaysia, Myanmar, and Thailand.

    RECENT FINDINGS: The quality of multiple generic DAAs has been shown to be bioequivalent to innovator formulations, with generic versions achieving high cure rates in real-world settings. Although published materials are limited, there is expanding experience with local pilot and national treatment programs which are largely being funded by national governments and other institutions.

    SUMMARY: Countries and other public health stakeholders are recognizing the need to scale up HCV diagnosis and treatment programs using generic DAAs. However, local pilot or national treatment programs need to be massively expanded to eliminate HCV in high-burden areas.

    Matched MeSH terms: Therapeutic Equivalency
  13. Atif M, Khalid SH, Onn Kit GL, Sulaiman SA, Asif M, Chandersekaran A
    J Young Pharm, 2013 Mar;5(1):26-9.
    PMID: 24023449 DOI: 10.1016/j.jyp.2013.01.005
    A simple, sensitive and selective HPLC method with UV detection for determination of Glipizide in human plasma was developed. Liquid-liquid extraction method was used to extract the drug from the plasma samples. Chromatographic separation of Glipizide was achieved using C18 column (ZORBAX ODS 4.6 × 150 mm). The mobile phase was comprised of 0.01 M potassium dihydrogen phosphate and acetonitrile (65:35, v/v) adjusted to pH 4.25 with glacial acetic acid. The analysis was run at a flow rate of 1.5 mL/min with an injection volume was 20 μL. The detector was operated at 275 nm. The calibration curve was linear over a concentration range of 50-1600 ng/mL. Intra-day and inter-day precision and accuracy values were below 15%. The limit of quantification was 50 ng/mL and the mean recovery was above 98%. Freeze-thaw, short-term, long-term and post-preparative stability studies showed that Glipizide in plasma sample was stable. The method may be successfully applied to analyze the Glipizide concentration in plasma samples for bioavailability and bioequivalence studies.
    Matched MeSH terms: Therapeutic Equivalency
  14. Liew KB, Peh KK, Loh GO, Tan YT
    Drug Dev Ind Pharm, 2014 Sep;40(9):1156-62.
    PMID: 23688276 DOI: 10.3109/03639045.2013.798805
    Although the general pharmacokinetics of cephalexin is quite established up-to-date, however, no population-based study on Cephalexin pharmacokinetics profile in Malay population has been reported yet in the literature.
    Matched MeSH terms: Therapeutic Equivalency
  15. Sharma D, Patel RP, Zaidi STR, Sarker MMR, Lean QY, Ming LC
    Front Pharmacol, 2017;8:546.
    PMID: 28871228 DOI: 10.3389/fphar.2017.00546
    Ciprofloxacin, a second generation broad spectrum fluoroquinolone, is active against both Gram-positive and Gram-negative bacteria. Ciprofloxacin has a high oral bioavailability and a large volume of distribution. It is used for the treatment of a wide range of infections including urinary tract infections caused by susceptible bacteria. However, the availability and use of substandard and spurious quality of oral ciprofloxacin formulations in the developing countries has been thought to have contributed toward increased risk of treatment failure and bacterial resistance. Therefore, quality control and bioequivalence studies of the commercially available oral ciprofloxacin formulations should be monitored. Appropriate actions should be taken against offending manufacturers in order to prevent the sale of substandard and spurious quality of ciprofloxacin formulations.
    Matched MeSH terms: Therapeutic Equivalency
  16. Loh GOK, Wong EYL, Goh CZ, Tan YTF, Lee YL, Pang LH, et al.
    Ann Med, 2023;55(2):2270502.
    PMID: 37857359 DOI: 10.1080/07853890.2023.2270502
    The study aimed to develop a sensitive and high-throughput liquid chromatography coupled with tandem mass spectrometry method to quantify concentrations of tramadol and paracetamol simultaneously in human plasma. Sample preparation involved single-step protein precipitation using methanol and two deuterated internal standards, tramadol D6 and paracetamol D4. Agilent Poroshell 120 EC-C18 (100 × 2.1 mm, 2.1 µm) analytical column was employed to achieve chromatographic separation. Detection was in positive ion multiple reaction monitoring mode. A tailing factor (Tf) of <1.2, separation factor (K prime) of >1.5 from the column dead time and signal-to-noise (S/N) ratio >10, were obtained for analytes and internal standards. The standard curve was linear over the concentration range of 2.5-500.00 ng/mL for tramadol and 0.025-20.00 μg/mL for paracetamol. A small injection volume of 1 µL, low flow rate of 440 µL/min and short analysis time of 3.5 min reduced the solvent consumption, analysis cost and system contamination. The results of method validation parameters fulfilled the acceptance criteria of bioanalytical guidelines. The method was successfully applied to a bioequivalence study of fixed-dose combination products of tramadol and paracetamol in Malaysian healthy subjects.
    Matched MeSH terms: Therapeutic Equivalency
  17. Ibahim MJ, Crosbie JC, Yang Y, Zaitseva M, Stevenson AW, Rogers PA, et al.
    PLoS One, 2014;9(6):e100547.
    PMID: 24945301 DOI: 10.1371/journal.pone.0100547
    High-dose synchrotron microbeam radiation therapy (MRT) has shown the potential to deliver improved outcomes over conventional broadbeam (BB) radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments.
    Matched MeSH terms: Therapeutic Equivalency
  18. Taylor PW, Arnet I, Fischer A, Simpson IN
    Obes Facts, 2010 Aug;3(4):231-7.
    PMID: 20823686 DOI: 10.1159/000319450
    OBJECTIVE: To compare the pharmaceutical quality of Xenical (chemically produced orlistat) with nine generic products, each produced by fermentation processes.

    METHODS: Xenical 120 mg capsules (Roche, Basel, Switzerland) were used as reference material. Generic products were from India, Malaysia, Argentina, Philippines, Uruguay, and Taiwan. Colour, melting temperature, crystalline form, particle size, capsule fill mass, active pharmaceutical ingredient content, amount of impurities, and dissolution were compared. Standard physical and chemical laboratory tests were those developed by Roche for Xenical.

    RESULTS: All nine generic products failed the Xenical specifications in four or more tests, and two generic products failed in seven tests. A failure common to all generic products was the amount of impurities present, mostly due to different by-products, including side-chain homologues not present in Xenical. Some impurities were unidentified. Two generic products tested failed the dissolution test, one product formed a capsule-shaped agglomerate on storage and resulted in poor (=15%) dissolution. Six generic products were powder formulations.

    CONCLUSIONS: All tested generic orlistat products were pharmaceutically inferior to Xenical. The high levels of impurities in generic orlistat products are a major safety and tolerability concern.

    Matched MeSH terms: Therapeutic Equivalency
  19. Chik Z, Johnston A, Tucker AT, Kirby K, Alam CA
    Int J Clin Pharmacol Ther, 2009 Apr;47(4):262-8.
    PMID: 19356392
    Circulating concentrations of endogenous compounds such as testosterone, complicate the analysis of pharmacokinetic parameters when these compounds are administered exogenously. This study examines the influence of three correction methods of accounting for endogenous concentrations on the determination of bioequivalence between two testosterone formulations.
    Matched MeSH terms: Therapeutic Equivalency
  20. Kumar R, Hassali MA, Saleem F, Alrasheedy AA, Kaur N, Wong ZY, et al.
    J Pharm Policy Pract, 2015;8(1):11.
    PMID: 25861452 DOI: 10.1186/s40545-015-0031-9
    OBJECTIVES: Generic medicine prescribing has become a common practice in public hospitals. However, the trend in private medical centres seems to be different. The objective of this study was to investigate knowledge, perceptions and behavior of physicians from private medical centres in Malaysia regarding generic medicines.

    METHODS: This study was a cross-sectional nationwide survey targeting physicians from private medical centres in Malaysia. The survey was conducted using questionnaire having (i) background and demographic data of the physicians, volume of prescription in a day, stock of generic medicines in their hospital pharmacy etc. (ii) their knowledge about bioequivalence (iii) prescribing behavior (iv) physicians' knowledge of quality, safety and efficacy of generic medicines, and their cost (v) perceptions of physicians towards issues pertaining to generic medicines utilization.

    RESULTS: A total of 263 questionnaires out of 735 were received, giving a response rate of 35.8%. Of the respondents, 214 (81.4%) were male and 49 (18.6%) were females. The majority of the participants were in the age range of 41-50 years and comprised 49.0% of the respondents. Only 2.3% of physicians were aware of the regulatory limits of bioequivalence standards in Malaysia. Of the respondents, 23.2% agreed that they 'always' write their prescriptions using originator product name whereas 50.2% do it 'usually'. A number of significant associations were found between their knowledge, perceptions about generic medicines and their demographic characteristics.

    CONCLUSIONS: The majority of the physicians from private medical centres in Malaysia had negative perceptions about safety, quality and the efficacy of generic medicines. These negative perceptions could be the cause of the limited use of generic medicines in the private medical centres. Therefore, in order to facilitate their use, it is recommended that the physicians need to be reassured and educated about the drug regulatory authority approval system of generic medicines with regard to their bioequivalence, quality, efficacy and safety. Apart from the policy on generic substitution, it would also be recommended to have a national medicine pricing policy, which controls drug prices, in both the public and private sector. These efforts are worthwhile to reduce the drug expenditure and improve the medicine affordability in Malaysia.

    Matched MeSH terms: Therapeutic Equivalency
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links