Displaying publications 1 - 20 of 153 in total

Abstract:
Sort:
  1. Loy ACM, Gan DKW, Yusup S, Chin BLF, Lam MK, Shahbaz M, et al.
    Bioresour Technol, 2018 Aug;261:213-222.
    PMID: 29665455 DOI: 10.1016/j.biortech.2018.04.020
    The thermal degradation behaviour and kinetic parameter of non-catalytic and catalytic pyrolysis of rice husk (RH) using rice hull ash (RHA) as catalyst were investigated using thermogravimetric analysis at four different heating rates of 10, 20, 50 and 100 K/min. Four different iso conversional kinetic models such as Kissinger, Friedman, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) were applied in this study to calculate the activation energy (EA) and pre-exponential value (A) of the system. The EA of non-catalytic and catalytic pyrolysis was found to be in the range of 152-190 kJ/mol and 146-153 kJ/mol, respectively. The results showed that the catalytic pyrolysis of RH had resulted in a lower EA as compared to non-catalytic pyrolysis of RH and other biomass in literature. Furthermore, the high Gibb's free energy obtained in RH implied that it has the potential to serve as a source of bioenergy production.
    Matched MeSH terms: Thermogravimetry*
  2. Yiin CL, Yusup S, Quitain AT, Uemura Y, Sasaki M, Kida T
    Bioresour Technol, 2018 May;255:189-197.
    PMID: 29414166 DOI: 10.1016/j.biortech.2018.01.132
    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment.
    Matched MeSH terms: Thermogravimetry*
  3. Loy ACM, Yusup S, How BS, Yiin CL, Chin BLF, Muhammad M, et al.
    Bioresour Technol, 2019 Dec;294:122089.
    PMID: 31526932 DOI: 10.1016/j.biortech.2019.122089
    The aim of this study was to understand the influence of catalyst in thermal degradation behavior of rice husk (RH) in catalytic fast pyrolysis (CFP) process. An iso-conversional Kissinger kinetic model was introduced into this study to understand the activation energy (EA), pre-exponential value (A), Enthalpy (ΔH), Entropy (ΔS) and Gibb's energy (ΔG) of non-catalytic fast pyrolysis (NCFP) and CFP of RH. The study revealed that the addition of natural zeolite catalyst enhanced the rate of devolatilization and decomposition of RH associated with lowest EA value (153.10 kJ/mol) compared to other NCFP and CFP using nickel catalyst. Lastly, an uncertainty estimation was applied on the best fit non-linear regression model (MNLR) to identify the explanatory variables. The finding showed that it had the highest probability to obtain 73.8-74.0% mass loss in CFP of rice husk using natural zeolite catalyst.
    Matched MeSH terms: Thermogravimetry
  4. Teng SY, Loy ACM, Leong WD, How BS, Chin BLF, Máša V
    Bioresour Technol, 2019 Nov;292:121971.
    PMID: 31445240 DOI: 10.1016/j.biortech.2019.121971
    The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.
    Matched MeSH terms: Thermogravimetry
  5. Salema AA, Ting RMW, Shang YK
    Bioresour Technol, 2019 Feb;274:439-446.
    PMID: 30553084 DOI: 10.1016/j.biortech.2018.12.014
    The aim of this study was to pyrolyze individual (oil palm shell, empty fruit bunch and sawdust) as well as blend biomass in a thermogravimetric mass spectrometry (TG-MS) from room temperature to 800 °C at constant heating rate of 15 °C/min. The results showed that the onset TG temperature for blend biomass shifted slightly to lower values. Activation energy values were also found to decrease slightly after blending the biomass. Interestingly, the MS spectra of selected gases (H2O CH4, H2O, C2H2, C2H4 or CO, CH2O, CH3OH, HCl, C3H6, CO2, HCOOH, and C6H12) evolved from blend biomass showed decreased in the intensity as compared to their individual biomass. Overall, the blend biomass showed synergy which provides ways to expand the possibility of utilizing multiple feedstocks in one thermo-chemical system.
    Matched MeSH terms: Thermogravimetry
  6. Majid M, Chin BLF, Jawad ZA, Chai YH, Lam MK, Yusup S, et al.
    Bioresour Technol, 2021 Jun;329:124874.
    PMID: 33647605 DOI: 10.1016/j.biortech.2021.124874
    This study investigated on the co-pyrolysis of microalgae Chlorella vulgaris and high-density polyethylene (HDPE) waste mixtures which was performed with three types of catalysts, namely limestone (LS), HZSM-5 zeolite, and novel bi-functional LS/HZSM-5/LS. Kissinger-Kai (K-K) model-free method was coupled with Particle Swarm Optimization (PSO) model-fitting method using the thermogravimetric experimental data. A global sensitivity analysis was carried out using Latin Hypercube Sampling and rank transformation to assess the extent of impact of the input kinetic parameters on the output results. Furthermore, a thermodynamic analysis was performed to obtain parameters such as enthalpy change (ΔH), Gibb's free energy (ΔG), and entropy change (ΔS). The activation energy (EA) of the microalgae Chlorella vulgaris and HDPE binary mixture were found to be lower upon the addition of catalysts. Among the catalyst used, bi-functional LS/HZSM-5 catalyst exhibited the lowest EA (83.59 kJ/mol) and ΔH (78 kJ/mol) as compared to LS and HZSM-5 catalysts.
    Matched MeSH terms: Thermogravimetry
  7. Kwon D, Oh JI, Lam SS, Moon DH, Kwon EE
    Bioresour Technol, 2019 Aug;285:121356.
    PMID: 31005642 DOI: 10.1016/j.biortech.2019.121356
    To valorize biomass waste, pyrolysis of orange peel was mainly investigated as a case study. In an effort to establish a more sustainable thermolytic platform for orange peel, this study particularly employed CO2 as reactive gas medium. Accordingly, this study laid great emphasis on elucidating the mechanistic role of CO2 in pyrolysis of orange peel. The thermo-gravimetric analysis (TGA) confirmed that no occurrence of the heterogeneous reactions between the solid sample and CO2. However, the gaseous effluents from pyrolysis of orange peel experimentally proved that CO2 effectively suppressed dehydrogenation of volatile matters (VMs) evolved from the thermolysis of orange peel by random bond scissions. Moreover, CO2 reacted VMs, thereby resulting in the formation of CO. Note that the formation of CO was being initiated at temperatures ≥550 °C. The two identified roles of CO2 led to the compositional modification of pyrolytic oil by means of lowering aromaticity.
    Matched MeSH terms: Thermogravimetry
  8. Naqvi SR, Hameed Z, Tariq R, Taqvi SA, Ali I, Niazi MBK, et al.
    Waste Manag, 2019 Feb 15;85:131-140.
    PMID: 30803566 DOI: 10.1016/j.wasman.2018.12.031
    This study investigates the thermal decomposition, thermodynamic and kinetic behavior of rice-husk (R), sewage sludge (S) and their blends during co-pyrolysis using thermogravimetric analysis at a constant heating rate of 20 °C/min. Coats-Redfern integral method is applied to mass loss data by employing seventeen models of five major reaction mechanisms to calculate the kinetics and thermodynamic parameters. Two temperature regions: I (200-400 °C) and II (400-600 °C) are identified and best fitted with different models. Among all models, diffusion models show high activation energy with higher R2(0.99) of rice husk (66.27-82.77 kJ/mol), sewage sludge (52.01-68.01 kJ/mol) and subsequent blends (45.10-65.81 kJ/mol) for region I and for rice husk (7.31-25.84 kJ/mol), sewage sludge (1.85-16.23 kJ/mol) and blends (4.95-16.32 kJ/mol) for region II, respectively. Thermodynamic parameters are calculated using kinetics data to assess the co-pyrolysis process enthalpy, Gibbs-free energy, and change in entropy. Artificial neural network (ANN) models are developed and employed on co-pyrolysis thermal decomposition data to study the reaction mechanism by calculating Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and coefficient of determination (R2). The co-pyrolysis results from a thermal behavior and kinetics perspective are promising and the process is viable to recover organic materials more efficiently.
    Matched MeSH terms: Thermogravimetry
  9. Hai A, Bharath G, Daud M, Rambabu K, Ali I, Hasan SW, et al.
    Chemosphere, 2021 Nov;283:131162.
    PMID: 34157626 DOI: 10.1016/j.chemosphere.2021.131162
    Pyrolysis of agricultural biomass is a promising technique for producing renewable energy and effectively managing solid waste. In this study, groundnut shell (GNS) was processed at 500 °C in an inert gas atmosphere with a gas flow rate and a heating rate of 10 mL/min and 10 °C/min, respectively, in a custom-designed fluidized bed pyrolytic-reactor. Under optimal operating conditions, the GNS-derived pyrolytic-oil yield was 62.8 wt.%, with the corresponding biochar (19.5 wt.%) and biogas yields (17.7 wt.%). The GC-MS analysis of the GNS-based bio-oil confirmed the presence of (trifluoromethyl)pyridin-2-amine (18.814%), 2-Fluoroformyl-3,3,4,4-tetrafluoro-1,2-oxazetidine (16.23%), 5,7-dimethyl-1H-Indazole (11.613%), N-methyl-N-nitropropan-2-amine (6.5%) and butyl piperidino sulfone (5.668%) as major components, which are used as building blocks in the biofuel, pharmaceutical, and food industries. Furthermore, a 2 × 5 × 1 artificial neural network (ANN) architecture was developed to predict the decomposition behavior of GNS at heating rates of 5, 10, and 20 °C/min, while the thermodynamic and kinetic parameters were estimated using a non-isothermal model-free method. The Popescu method predicted activation energy (Ea) of GNS biomass ranging from 111 kJ/mol to 260 kJ/mol, with changes in enthalpy (ΔH), Gibbs-free energy (ΔG), and entropy (ΔS) ranging from 106 to 254 kJ/mol, 162-241 kJ/mol, and -0.0937 to 0.0598 kJ/mol/K, respectively. The extraction of high-quality precursors from GNS pyrolysis was demonstrated in this study, as well as the usefulness of the ANN technique for thermogravimetric analysis of biomass.
    Matched MeSH terms: Thermogravimetry
  10. Azwar E, Chan DJC, Kasan NA, Rastegari H, Yang Y, Sonne C, et al.
    J Hazard Mater, 2022 02 15;424(Pt A):127329.
    PMID: 34601414 DOI: 10.1016/j.jhazmat.2021.127329
    Aquatic weeds pose hazards to aquatic ecosystems and particularly the aquatic environment in shellfish aquaculture due to its excessive growth covering entire freshwater bodies, leading to environmental pollution particularly eutrophication intensification, water quality depletion and aquatic organism fatality. In this study, pyrolysis of six aquatic weed types (wild and cultured species of Salvinia sp., Lemna sp. and Spirodella sp.) were investigated to evaluate its potential to reduce and convert the weeds into value-added chemicals. The aquatic weeds demonstrated high fixed carbon (8.7-47.3 wt%), volatile matter content (39.0-76.9 wt%), H/C ratio (1.5-2.0) and higher heating value (6.6-18.8 MJ/kg), representing desirable physicochemical properties for conversion into biofuels. Kinetic analysis via Coats-Redfern integral method obtained different orders for chemical reaction mechanisms (n = 1, 1.5, 2, 3), activation energy (55.94-209.41 kJ/mol) and pre-exponential factor (4.08 × 104-4.20 × 1017 s-1) at different reaction zones (zone 1: 150-268 °C, zone 2: 268-409 °C, zone 3: 409-600 °C). The results provide useful information for design and optimization of the pyrolysis reactor and establishment of the process condition to dispose this environmentally harmful species.
    Matched MeSH terms: Thermogravimetry
  11. Saad B, Wai WT, Lim BP
    J Oleo Sci, 2008;57(4):257-61.
    PMID: 18332590
    A comparative study of oxidative decomposition behavior of a wide range of vegetable oils and its correlation to iodine value (IV) using thermogravimetric analysis (TGA) was described. The oxidative decomposition of saturated fatty acids shows weight loss before 385 degrees C while oxidative decomposition of unsaturated fatty acids shows lower rate of weight loss (dWt/dt) compared to saturated fatty acids due to the oxidation process ('up taking ' of oxygen) involving breaking down of double bond to form primary and secondary oxidation products, which leads to some weight gain in the sample before being decomposed. The relative differences in the dWt/dt (%/min) of the both fatty acids give different decomposition steps in TGA thermogram, enabling IV to be determined through the percentage weight loss of saturated fatty acids per 100% of total sample weight (excluding weight loss from moisture and volatile compounds). Therefore, TGA method can be used as an alternative method for IV determination with no sample pre-dilution and solvent consumption. Using the TGA methods, good correlation (r = 0.9889) with standard AOCS method was achieved.
    Matched MeSH terms: Thermogravimetry*
  12. Islam MA, Kabir G, Asif M, Hameed BH
    Bioresour Technol, 2015 Oct;194:14-20.
    PMID: 26176821 DOI: 10.1016/j.biortech.2015.06.094
    This study examined the combustion profile and kinetics of hydrochar produced from hydrothermal carbonisation (HTC) of Karanj fruit hulls (KFH). The HTC-KFH hydrochar combustion kinetics was investigated at 5, 10, and 20°C/min by thermogravimetric analysis. The kinetics model, Kissinger-Akahira-Sunose revealed the combustion kinetics parameters for the extent of conversion from 0.1 to 0.8; the activation energy varies from 114 to 67 kJ/mol respectively. The hydrochar combustion followed multi-steps kinetics; the Coats-Redfern models predicted the activation energies and pre-exponential constants for the hydrochar combustion zones. The diffusion models are the effective mechanism in the second and third zone.
    Matched MeSH terms: Thermogravimetry/methods*
  13. Mohammed MA, Salmiaton A, Wan Azlina WA, Mohamad Amran MS
    Bioresour Technol, 2012 Apr;110:628-36.
    PMID: 22326334 DOI: 10.1016/j.biortech.2012.01.056
    Empty fruit bunches (EFBs), a waste material from the palm oil industry, were subjected to pyrolysis and gasification. A high content of volatiles (>82%) increased the reactivity of EFBs, and more than 90% decomposed at 700°C; however, a high content of moisture (>50%) and oxygen (>45%) resulted in a low calorific value. Thermogravimetric analysis demonstrated that the higher the heating rate and the smaller the particle size, the higher the peak and final reaction temperatures. The least squares estimation for a first-order reaction model was used to study the degradation kinetics. The values of activation energy increased from 61.14 to 73.76 and from 40.06 to 47.99kJ/mol when the EFB particle size increased from 0.3 to 1.0mm for holocellulose and lignin degradation stages, respectively. The fuel characteristics of EFB are comparable to those of other biomasses and EFB can be considered a good candidate for gasification.
    Matched MeSH terms: Thermogravimetry
  14. Islam MA, Auta M, Kabir G, Hameed BH
    Bioresour Technol, 2016 Jan;200:335-41.
    PMID: 26512856 DOI: 10.1016/j.biortech.2015.09.057
    The combustion characteristics of Karanj fruit hulls char (KFH-char) was investigated with thermogravimetry analysis (TGA). The TGA outlined the char combustion thermographs at a different heating rate and isoconversional methods expressed the combustion kinetics. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods authenticated the char average activation energy at 62.13 and 68.53kJ/mol respectively, enough to derive the char to burnout. However, the Coats-Redfern method verified the char combustion via complex multi-step mechanism; the second stage mechanism has 135kJ/mol average activation energy. The TGA thermographs and kinetic parameters revealed the adequacy of the KFH-char as fuel substrate than its precursor, Karanj fruit hulls (KFH).
    Matched MeSH terms: Thermogravimetry
  15. Siti Rohana Ahmad, Salmah Husseinsyah, Kamarudin Hussin
    MyJurnal
    In this study, dynamic vulcanization process was used to improve the thermal properties of calcium carbonate filled composites. The composites were prepared using a Z-blade mixer at 180oC and rotor speed 50rpm. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) techniques were used to analyze the thermal properties of the composites. The vulcanized and unvulcanized PP/EPDM composites were filled by CaCO3 at 0, 10, 20, 30, and 40 %wt. Meanwhile, thermogravimetric analysis indicates that the total weight loss of PP/EPDM/CaCO3 composites decreased with increasing filler loading. Dynamic vulcanized composites have higher thermal stability, while the crystallinity of PP/EPDM/CaCO3 composites were increased as compared to unvulcanized composites. Therefore, the thermal properties were improved by the presence of
    dynamic vulcanization process.
    Matched MeSH terms: Thermogravimetry
  16. Rosdi, N.H., Mohd Kanafi, N., Abdul Rahman, N.
    MyJurnal
    Cellulose acetate (CA) is an interesting material due to its wide spectrum of utilities across different domains ranging from absorbent to membrane filters. In this study, polystyrene (PS) nanofibres, and cellulose acetate/polystyrene (CA/PS) blend nanofibres with various ratios of CA: PS from 20: 80 to 80: 20 were fabricated by using electrospinning technique. The SEM images show that the nanofibres exhibited non-uniform and random orientation with the average fibre diameter in the range of 100 to 800 nm. It was found that the incorporation of PS had a great effect on the morphology of nanofibre. At high proportion of PS, no or less beaded CA/PS nanofibres were formed. Thermal properties of the composite nanofibres were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. The TGA results showed thermal stability of CA/PS nanofibres were higher than pristine CA.
    Matched MeSH terms: Thermogravimetry
  17. Ooi SY, Ishak Ahmad, Mohd Cairul Iqbal Mohd Amin
    Sains Malaysiana, 2015;44:793-799.
    In this research, a novel method was performed to obtain hydrogel with superior thermal stability by incorporation
    of cellulose nanocrystals (CNC) into gelatin based hydrogel. Glutaraldehyde was used as cross-linker due to its high
    chemical reactivity towards NH2
    group on gelatin. Different ratio of gelatin/CNC hydrogel was produced in order to study
    the effects of CNC towards the swelling behaviour and thermal stability of gelatin based hydrogel. The obtained hydrogel
    was subjected to Fourier transform infrared (FTIR) to verify that gelatin had been cross-linked, swelling test with different
    pH for swelling behaviour and thermogravimetric analysis (TGA) for thermal stability. The presence of C=N stretching
    group in the FTIR spectrum for gelatin/CNC hydrogel indicated that the cross-linking reaction between gelatin monomer
    had been successfully carried out. The hydrogel showed impressive pH sensitivity and maximum swelling was obtained
    at pH3. The TGA results clearly showed that the incorporation of CNC into gelatin was able to produce hydrogel with
    higher thermal stability compare to neat gelatin.
    Matched MeSH terms: Thermogravimetry
  18. Normasmira A. Rahman, Aziz Hassan, Yahya R, Lafia-Araga R
    Sains Malaysiana, 2013;42:537-546.
    Hybrid composites of polypropylene (PP)/nanoclay (NC)/glass fiber (GF) were prepared byextrusion and injection molding. Molded specimens were analyzed by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), tensile and flexural tests. TEM results revealed NC particle intercalation. TGA results showed that the incorporation of clay into the GF composite improves the thermal stability of the material. The initial thermal decomposition temperatures also shifted to higher values. Incorporation of GF into PP lowers the tensile strength of the binary composite, indicating poor fiber-matrix interfacial adhesion. However, introducing NC increased the strength of the ternary composites. Tensile modulus was enhanced with the incorporation of GF and further increased with an introduction of NC. Flexural strength and flexural modulus are both enhanced with an increase in GF and NC loading.
    Matched MeSH terms: Thermogravimetry
  19. Ahmad Fikri Abdul Karim, Hanafi Ismail, Zulkifli Mohamad Ariff
    Sains Malaysiana, 2018;47:2163-2169.
    This research was carried out to study the effects of kenaf loading and alkaline treatment on tensile properties, density,
    thermal and morphological properties of kenaf filled natural rubber latex foam (NRLF). Samples were prepared using a
    Dunlop method. From the results, increasing loading of kenaf reduced the tensile strength and elongation at break for
    both samples, treated and untreated kenaf filled NRLF. Meanwhile, modulus at 100% elongation and density increased
    with an increased in kenaf loading. Samples with treated kenaf showed higher tensile strength, modulus at 100%
    elongation and density but low in elongation at break as compared with samples with untreated kenaf. Thermal study
    by using thermogravimetric analysis (TGA) showed that thermal stability reduced with increased in kenaf loading for
    both samples. Samples with treated kenaf have higher thermal stability compared with samples of untreated kenaf. The
    filler-matrix interaction and the pores size variation of both samples was clearly seen in the micrograph images by using
    scanning electron microscope (SEM).
    Matched MeSH terms: Thermogravimetry
  20. Nurdin I, Johan MR, Yaacob II, Ang BC
    ScientificWorldJournal, 2014;2014:589479.
    PMID: 24963510 DOI: 10.1155/2014/589479
    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.
    Matched MeSH terms: Thermogravimetry
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links