Displaying all 6 publications

Abstract:
Sort:
  1. Merican Z, Sukumaran S, Raji VL, Rajikin MH, Khalid BA
    Clin Exp Pharmacol Physiol, 1992 Dec;19(12):843-6.
    PMID: 1335382
    1. The effects of thyroxine treatment on soleus and extensor digitorum longus (EDL) muscle contractions and their cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels were examined in anaesthetized cats. 2. Thyroxine treatment decreased the tension of incomplete tetanic contractions of the soleus as well as the EDL muscles. The effect on tension of these muscles was not associated with an increase in the cyclic AMP level of the muscle as is the case with a beta 2-adrenoceptor agonist effect. 3. The results do not support the involvement of cyclic AMP in the tension depressant effect of thyroxine on contractions of skeletal muscle. 4. It is suggested that the muscle weakness and tremor observed in thyrotoxicosis and during administration of beta 2-adrenoceptor agonists are mediated by different mechanisms.
    Matched MeSH terms: Thyroxine/pharmacology*
  2. Ruszymah BH, Zaiton Z, Aminuddin S, Khalid BA
    Exp. Clin. Endocrinol. Diabetes, 2001;109(4):227-30.
    PMID: 11453035
    The aim of this study was to investigate the effect of altered thyroid status on 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD type 1) and type 2 (11beta-HSD type 2) bioactivity in rat kidney and colon. Male Sprague-Dawley rats (250 g) were treated with either L-thyroxine (T4) or propylthiouracil (PTU) for 4 weeks. Blood were then analysed for serum thyroxine, sodium (Na+) and potassium (K+). The kidneys and colon were assayed for 11beta-HSD type 1 and 11beta-HSD type 2 bioactivity. In T4 treated rats the serum thyroxine was significantly elevated (p<0.05) whilst PTU decreased serum thyroxine significantly (p<0.001) compared to controls. Serum Na+ and K+ were within normal limits. There were no significant changes in 11beta-HSD type 1 bioactivity in both treatment groups compared to controls. However, the 11beta-HSD type 2 bioactivity in rats given thyroxine was significantly higher in the colon (p<0.003) compared to controls. We conclude that altered thyroid status had no effect on 11beta-HSD type 1 bioactivity but 11beta-HSD type 2 bioactivity was elevated in the colon of rats given supplementary thyroxine.
    Matched MeSH terms: Thyroxine/pharmacology*
  3. Kamis AB, Ahmad RA, Chang JS, Ambu S
    Parasitol Res, 1994;80(1):87-8.
    PMID: 8153134
    Daily intramuscular injection with thyroxine (T4) at a dose of 2.5 micrograms/100 g body weight decreased the larvae and adult worm burden of Parastrongylus malaysiensis in the brain and pulmonary arteries of male Sprague-Dawley albino rats. In contrast, rats treated with propyl thiouracil (PTU), an antithyroid drug, at a dose of 3.75 mg/100 g body weight retained greater numbers of larvae and adult worms. The results may reflect the contrasting immunomodulatory effects of T4 and PTU that influence the susceptibility of the host.
    Matched MeSH terms: Thyroxine/pharmacology*
  4. Lam SK, Harvey S
    PMID: 1970531
    1. Anaesthesia caused marked decreases in the plasma concentrations of triiodothyronine (T3) and thyroxine (T4) and in the body temperature of young fowl. 2. Exogenous T4 or a thyroid hormone secretagogue (somatostatin antiserum), increased endogenous T3 and T4 concentrations and body temperature in conscious birds and prevented the body temperature decline in anaesthetized fowl. 3. These results provide further evidence for a role of T3 and T4 in temperature regulation in birds, particularly during anaesthesia.
    Matched MeSH terms: Thyroxine/pharmacology
  5. Nabishah BM, Morat PB, Alias AK, Kadir BA, Khalid BA
    Clin Exp Pharmacol Physiol, 1992 Dec;19(12):839-42.
    PMID: 1335381
    1. Male Sprague-Dawley rats were made either hyper- or hypothyroid with thyroxine or 4-methyl-2-thiouracil, respectively. Bronchial smooth muscle (BSM) contractility and lung cyclic adenosine 3',5'-monophosphate (cAMP) content were measured in both conditions. 2. Bronchial smooth muscle contractility was significantly weaker in hyperthyroid rats, while the BSM contractility of hypothyroid rats was the same as controls. 3. The cAMP content of hyperthyroid rat lungs was similar to controls but was decreased in hypothyroid rats. 4. These studies demonstrated that both the hyper- and hypothyroid states affect respiration, although the mechanisms involved with different for each condition.
    Matched MeSH terms: Thyroxine/pharmacology
  6. Salleh N, Sayem ASM, Giribabu N, Khaing SL
    Cell Biol Int, 2019 May;43(5):486-494.
    PMID: 30761678 DOI: 10.1002/cbin.11114
    Hypothyroidism has been linked to infertility, but the mechanisms underlying infertility-related hypothyroidism have yet to be fully elucidated. Therefore, in this study, effects of hypothyroidism on expression of the proteins related to thyroid hormone function in the uterus, which were thought to play a role implantation, including thyroid hormone receptor (TR), thyroid stimulating hormone receptor (TSHR), retinoic acid receptor (RAR) and extracellular kinase (ERK) were identified. Pregnant female rats were rendered hypothyroid by giving methimazole (MMI), orally. Following hypothyroid induction, rats were grouped into control (non-treated) and received subcutaneous thyroxine at 20, 40, and 80 μg/kg/day for five consecutive days. At Day 6, which is the day of implantation (GD 6), rats were sacrificed and the number of embryo implantation site in the uterus was calculated. Then, uterine horns were harvested and expression of the above proteins and their mRNAs were identified by Western blotting and real-time PCR, respectively. In non-treated hypothyroid pregnant rats, the number of embryo implantation sites decreased as compared to euthyroid and hypothyroid rats receiving thyroxine treatment. Similarly, expression of TRα-1, TRβ-1, TSHR, ERK1/2 and RAR proteins and mRNA in the uterus of non-treated hypothyroid rats also decreased (P 
    Matched MeSH terms: Thyroxine/pharmacology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links