Displaying publications 1 - 20 of 212 in total

Abstract:
Sort:
  1. Fu JY, Meganathan P, Gunasegaran N, Tan DMY
    Food Res Int, 2023 Sep;171:113048.
    PMID: 37330852 DOI: 10.1016/j.foodres.2023.113048
    Vitamin E is one of the most important essential vitamins to support the regulation of oxidative stress in human body. Tocotrienols are part of the vitamin E family. The potentials of tocotrienols as nutraceutical ingredient are largely understated due to low oral bioavailability, which is a common problem associated with fat-soluble bioactive compounds. Nanoencapsulation technology offers innovative solutions to enhance the delivery mechanisms of these compounds. In this study, the effect of nanoencapsulation on the oral bioavailability and tissue distribution of tocotrienols were investigated using two types of formulations, i.e. nanovesicles (NV-T3) and solid lipid nanoparticles (NP-T3). At least 5-fold increment in maximum plasma concentrations, evident with dual-peak pharmacokinetic profiles, were observed after oral administration of nano-encapsulated tocotrienols. Plasma tocotrienol composition showed a shift from α-tocotrienol dominant in control group (Control-T3) to γ-tocotrienol dominant after nanoencapsulation. Tissue distribution of tocotrienols was found to be strongly influenced by the type of nanoformulation. Both nanovesicles (NV-T3) and nanoparticles (NP-T3) showed elevated accumulation in the kidneys and liver (5-fold) compared to control group while selectivity for α-tocotrienol was evident for NP-T3. In brain and liver of rats given NP-T3, α-tocotrienol emerged as the dominant congener (>80%). Acute oral administration of nanoencapsulated tocotrienols did not show signs of toxicity. The study concluded enhanced bioavailability and selective tissue accumulation of tocotrienol congeners when delivered via nanoencapsulation.
    Matched MeSH terms: Tocotrienols*
  2. Malekbala MR, Soltani SM, Hosseini S, Eghbali Babadi F, Malekbala R
    Crit Rev Food Sci Nutr, 2017 Sep 22;57(14):2935-2942.
    PMID: 26207585 DOI: 10.1080/10408398.2015.1020532
    During the past few years the scientific and medical community has been confronted with a continual interest in vitamin E with the interest prompted by new discoveries. Tocopherols and tocotrienols, commonly known as vitamin E, are extremely invaluable compounds and have various nutritional functionalities and benefits to human health. Great deals of research projects have been launched in order to develop effective methods for the extraction of vitamin E. By and large, three distinct extractive methods are usually employed: supercritical fluid extraction (SFE), molecular distillation, and adsorption methods. These methods are sensitive to different experimental conditions, such as pressure, temperature, and flow rate with noticeable effects on the efficiency of the extraction and enrichment of vitamin E. This review has covered the most commonly adapted extraction methods and has probed into the extraction yields under variable operational parameters.
    Matched MeSH terms: Tocotrienols/analysis*; Tocotrienols/isolation & purification
  3. Imam MU, Ismail M, Ooi DJ, Azmi NH, Sarega N, Chan KW, et al.
    Crit Rev Biotechnol, 2016 Aug;36(4):585-93.
    PMID: 25641328 DOI: 10.3109/07388551.2014.995586
    Plant bioresources are relied upon as natural, inexpensive, and sustainable remedies for the management of several chronic diseases worldwide. Plants have historically been consumed for medicinal purposes based on traditional belief, but this trend is currently changing. The growing interest in the medicinal properties of plant bioresources stems from concerns of side effects and other adverse effects caused by synthetic drugs. This interest has yielded a better understanding of the roles of plant bioactive compounds in health promotion and disease prevention, including the underlying mechanisms involved in such functional effects. The desire to maximize the potential of phytochemicals has led to the development of "rich fractions," in which extracts contain bioactive compounds in addition to elevated levels of the primary compound. Although a rich fraction effectively increases the bioactivity of the extract, the standardization and quality assurance process can be challenging. However, the supercritical fluid extraction (SFE) system is a promising green technology in this regard. Future clinical and pharmacological studies are needed to fully elucidate the implications of these preparations in the management of human diseases, thereby fostering a move toward evidence-based medicine.
    Matched MeSH terms: Tocotrienols/pharmacology*
  4. Shadisvaaran S, Chin KY, Shahida MS, Ima-Nirwana S, Leong XF
    J Oral Biosci, 2021 06;63(2):97-103.
    PMID: 33864905 DOI: 10.1016/j.job.2021.04.001
    BACKGROUND: Periodontitis is a noncommunicable inflammatory disease of the soft tissue and bone surrounding the teeth in the jaw, which affects susceptible individuals with poor oral hygiene. A growing interest has been seen in the use of dietary supplements and natural products for the treatment and prevention of periodontitis. Vitamin E consists of two major groups, namely tocopherols and tocotrienols, which are botanical lipophilic compounds with excellent anti-inflammatory and antioxidant properties.

    HIGHLIGHT: This review aimed to summarize the preclinical and clinical findings on the effects of vitamin E on periodontitis. The current literature suggests that vitamin E could improve the periodontal status by correcting redox status imbalance, reducing inflammatory responses, and promoting wound healing, thus highlighting the potential of vitamin E in the management of periodontitis.

    CONCLUSION: Direct evidence for the use of vitamin E supplementation or treatment of periodontitis in humans is still limited. More well-designed and controlled studies are required to ascertain its effectiveness.

    Matched MeSH terms: Tocotrienols*
  5. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    Food Chem, 2018 Feb 15;241:79-85.
    PMID: 28958562 DOI: 10.1016/j.foodchem.2017.08.075
    Tocotrienol microcapsules (TM) were formed by firstly preparing Pickering emulsion containing tocotrienols, which was then gelled into microcapsules using alginate and chitosan. In this study, we examined the stability of TM during storage and when applied into a model food system, i.e. yogurt. During storage at 40°C, TM displayed remarkably lower tocotrienols loss (50.8%) as compared to non-encapsulated tocotrienols in bulk oil (87.5%). When the tocotrienols were incorporated into yogurt, the TM and bulk oil forms showed a loss of 23.5% and 81.0%, respectively. Generally, the tocotrienols were stable in the TM form and showed highest stability when these TM were added into yogurt. δ-Tocotrienol was the most stable isomer in both forms during storage and when incorporated into yogurt. The addition of TM into yogurt caused minimal changes in the yogurt's color and texture but slightly altered the yogurt's viscosity.
    Matched MeSH terms: Tocotrienols/chemistry*
  6. Tan BL, Norhaizan ME, Chan LC
    Nutrients, 2023 May 28;15(11).
    PMID: 37299466 DOI: 10.3390/nu15112503
    Rice (Oryza sativa L.) is a principal food for more than half of the world's people. Rice is predominantly consumed as white rice, a refined grain that is produced during the rice milling process which removes the bran and germ and leaves the starchy endosperm. Rice bran is a by-product produced from the rice milling process, which contains many bioactive compounds, for instance, phenolic compounds, tocotrienols, tocopherols, and γ-oryzanol. These bioactive compounds are thought to protect against cancer, vascular disease, and type 2 diabetes. Extraction of rice bran oil also generates various by-products including rice bran wax, defatted rice bran, filtered cake, and rice acid oil, and some of them exert bioactive substances that could be utilized as functional food ingredients. However, rice bran is often utilized as animal feed or discarded as waste. Therefore, this review aimed to discuss the role of rice bran in metabolic ailments. The bioactive constituents and food product application of rice bran were also highlighted in this study. Collectively, a better understanding of the underlying molecular mechanism and the role of these bioactive compounds exerted in the rice bran would provide a useful approach for the food industry and prevent metabolic ailments.
    Matched MeSH terms: Tocotrienols*
  7. Durani LW, Jaafar F, Tan JK, Tajul Arifin K, Mohd Yusof YA, Wan Ngah WZ, et al.
    Clin Ter, 2016;166(6):e365-73.
    PMID: 26794818 DOI: 10.7417/T.2015.1902
    Tocotrienols have been known for their antioxidant properties besides their roles in cellular signalling, gene expression, immune response and apoptosis. This study aimed to determine the molecular mechanism of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs) by targeting the genes in senescence-associated signalling pathways.
    Matched MeSH terms: Tocotrienols
  8. Ng SH, Woi PM, Basri M, Ismail Z
    J Nanobiotechnology, 2013;11:27.
    PMID: 24059593 DOI: 10.1186/1477-3155-11-27
    Palm oil esters (POEs) are esters derived from palm oil and oleyl alcohol have great potential in the cosmetic and pharmaceutical industries due to the excellent wetting behavior of the esters without the oily feel. The role of oil-in-water nanoemulsions loaded with tocotrienol sedimentation behavior was studied. LUMiFuge® 116 particle separation analyzer was used to investigate the sedimentation behavior of POEs/tocotrienol/xanthan gum nanoemulsion system during centrifugation. Analyzing the sedimentation kinetics of dispersions in a centrifugal field also yields information about the rheological behavior and structural stability.
    Matched MeSH terms: Tocotrienols/pharmacology*
  9. Azlina MFN, Qodriyah MS, Kamisah Y
    Curr Drug Targets, 2018;19(12):1456-1462.
    PMID: 29173163 DOI: 10.2174/1389450118666171122130338
    BACKGROUND: Scientific reports had shown that stress is related to numerous pathological changes in the body. These pathological changes can bring about numerous diseases and can significantly cause negative effects in an individual. These include gastric ulcer, liver pathology and neurobehavioral changes. A common pathogenesis in many diseases related to stress involves oxidative damage. Therefore, the administration of antioxidants such as vitamin E is a reasonable therapeutic approach. However, there is conflicting evidence about antioxidant supplementation.

    OBJECTIVE: The aim of this work was to summarize documented reports on the effects of tocopherol and tocotrienol on various pathological changes induced by stress.

    RESULTS AND CONCLUSION: This review will reveal the scientific evidence of enteral supplementation of vitamin E in the forms of tocotrienol and tocopherol in animal models of stress. These models mimic the stress endured by critically ill patients in a clinical setting and psychological stress in individuals. Positive outcomes from enteral feeding of vitamin E in reducing the occurrence of stress-induced pathological changes are discussed in this review. These positive findings include their ability to reduced stress-induced gastric ulcers, elevated liver enzymes and improved locomotors activity. Evidences showing tocotrienol and tocopherol effects are not just related to its ability to reduce oxidative stress but also acting on other mechanism, are discussed.

    Matched MeSH terms: Tocotrienols/therapeutic use*
  10. Fu JY, Htar TT, De Silva L, Tan DM, Chuah LH
    Molecules, 2017 Feb 04;22(2).
    PMID: 28165404 DOI: 10.3390/molecules22020233
    Vitamin E is recognized as an essential vitamin since its discovery in 1922. Most vegetable oils contain a mixture of tocopherols and tocotrienols in the vitamin E composition. Structurally, tocopherols and tocotrienols share a similar chromanol ring and a side chain at the C-2 position. Owing to the three chiral centers in tocopherols, they can appear as eight different stereoisomers. Plant sources of tocopherol are naturally occurring in the form of RRR while synthetic tocopherols are usually in the form of all-racemic mixture. Similarly, with only one chiral center, natural tocotrienols occur as the R-isoform. In this review, we aim to discuss a few chromatographic methods that had been used to separate the stereoisomers of tocopherols and tocotrienols. These methods include high performance liquid chromatography, gas chromatography and combination of both. The review will focus on method development including selection of chiral columns, detection method and choice of elution solvent in the context of separation efficiency, resolution and chiral purity. The applications for separation of enantiomers in vitamin E will also be discussed especially in terms of the distinctive biological potency among the stereoisoforms.
    Matched MeSH terms: Tocotrienols/chemistry
  11. Musa AF, Dillon J, Md Taib ME, Yunus AM, Sanusi AR, Nordin MN, et al.
    J Cardiothorac Surg, 2021 Nov 24;16(1):340.
    PMID: 34819126 DOI: 10.1186/s13019-021-01721-6
    INTRODUCTION: Post-operative atrial fibrillation (POAF) is associated with poorer outcomes, increased resource utilisation, morbidity and mortality. Its pathogenesis is initiated by systemic inflammation and oxidative stress. It is hypothesised that a potent antioxidant and anti-inflammatory agent such as tocotrienol, an isomer of Vitamin E, could reduce or prevent POAF.

    AIMS: The aim of this study is to determine whether a potent antioxidative and anti-inflammatory agent, Tocovid, a tocotrienol-rich capsule, could reduce the incidence of POAF and affect the mortality and morbidity as well as the duration of ICU, HDU and hospital stay.

    METHODS: This study was planned as a prospective, randomised, controlled trial with parallel groups. The control group received placebo containing palm superolein while the treatment group received Tocovid capsules. We investigated the incidence of POAF, the length of hospital stay after surgery and the health-related quality of life.

    RESULTS: Recruitment commenced in January 2019 but the preliminary results were unblinded as the study is still ongoing. Two-hundred and two patients have been recruited out of a target sample size of 250 as of January 2021. About 75% have completed the study and 6.4% were either lost during follow-up or withdrew; 4% of participants died. The mean age group was 61.44 ± 7.30 years with no statistical difference between the groups, with males having a preponderance for AF. The incidence of POAF was 24.36% and the mean time for developing POAF was 55.38 ± 29.9 h post-CABG. Obesity was not a predictive factor. No statistically significant difference was observed when comparing left atrial size, NYHA class, ejection fraction and the premorbid history. The mean cross-clamp time was 71 ± 34 min and the mean bypass time was 95 ± 46 min, with no difference between groups. There was a threefold increase in death among patients with POAF (p = 0.008) and an increase in the duration of ICU stay (p = 0.01), the total duration of hospital stay (p = 0.04) and reintubation (p = 0.045).

    CONCLUSION: A relatively low incidence rate of POAF was noted although the study is still ongoing. It remains to be seen if our prophylactic intervention using Tocovid would effectively reduce the incidence of POAF. Clinical Registration Number: US National Library of Medicine. Clinical Trials - NCT03807037. Registered on 16th January 2019. Link: https://clinicaltrials.gov/ct2/show/NCT03807037.

    Matched MeSH terms: Tocotrienols*
  12. Gopalan Y, Shuaib IL, Magosso E, Ansari MA, Abu Bakar MR, Wong JW, et al.
    Stroke, 2014 May;45(5):1422-8.
    PMID: 24699052 DOI: 10.1161/STROKEAHA.113.004449
    Previous cell-based and animal studies showed mixed tocotrienols are neuroprotective, but the effect is yet to be proven in humans. Thus, the present study aimed to evaluate the protective activity of mixed tocotrienols in humans with white matter lesions (WMLs). WMLs are regarded as manifestations of cerebral small vessel disease, reflecting varying degrees of neurodegeneration and tissue damage with potential as a surrogate end point in clinical trials.
    Matched MeSH terms: Tocotrienols/administration & dosage; Tocotrienols/adverse effects; Tocotrienols/pharmacology*
  13. Nesaretnam K
    Cancer Lett, 2008 Oct 8;269(2):388-95.
    PMID: 18504069 DOI: 10.1016/j.canlet.2008.03.063
    Natural compounds with possible health benefits have become attractive targets for research in areas pertaining to human health. For both prevention and therapy of various human ailments, such compounds are preferred over synthetic ones due to their lesser toxicity. They are also easily absorbed and processed by our body. Vitamins are prominent among natural or endogenous compounds that are considered to be beneficial. The vitamin E group of compounds is among the better known of the vitamins due to their suggested health benefits including antioxidant and related protective properties. Among these, tocotrienols have gained prominence in recent years due to their potential applications and better protective effects in certain systems. These tocotrienols are vitamin E derivatives that are analogs of the more established forms of vitamin E namely tocopherols. In addition to their potent antioxidant activity, tocotrienols have other important functions, especially in maintaining a healthy cardiovascular system and a possible role in protection against cancer and other ailments.
    Matched MeSH terms: Tocotrienols/metabolism; Tocotrienols/pharmacology*; Tocotrienols/therapeutic use
  14. Babura SR, Abdullah SNA, Khaza Ai H
    J Nutr Sci Vitaminol (Tokyo), 2017;63(4):215-221.
    PMID: 28978868 DOI: 10.3177/jnsv.63.215
    Tocotrienols are forms of vitamin E that are present in several important food crops. Compared to tocopherols, less research has been conducted on these compounds because of their low bioavailability and distribution in plant tissues. Both tocotrienols and tocopherols are known for their antioxidant and anticancer activities, which are beneficial for both humans and animals. Moreover, tocotrienols possess certain properties which are not found in tocopherols, such as neuroprotective and cholesterol-lowering activities. The contents of tocotrienols in plants vary. Tocotrienols constitute more than 70% and tocopherols less than 30% of the total vitamin E content in palm oil, which is the best source of vitamin E. Accumulation of tocotrienols also occurs in non-photosynthetic tissues, such as the seeds, fruits and latex of some monocotyledonous and dicotyledonous plant species. The use of biotechnological techniques to increase the tocotrienol content in plants, their biological functions, and benefits to human health are discussed in this review.
    Matched MeSH terms: Tocotrienols/metabolism*; Tocotrienols/pharmacokinetics; Tocotrienols/chemistry
  15. Subramaniam S, Selvaduray KR, Radhakrishnan AK
    Biomolecules, 2019 11 21;9(12).
    PMID: 31766399 DOI: 10.3390/biom9120758
    Cancer is a devastating disease that has claimed many lives. Natural bioactive agents from plants are gaining wide attention for their anticancer activities. Several studies have found that natural plant-based bioactive compounds can enhance the efficacy of chemotherapy, and in some cases ameliorate some of the side-effects of drugs used as chemotherapeutic agents. In this paper, we have reviewed the literature on the anticancer effects of four plant-based bioactive compounds namely, curcumin, myricetin, geraniin and tocotrienols (T3) to provide an overview on some of the key findings that are related to this effect. The molecular mechanisms through which the active compounds may exert their anticancer properties in cell and animal-based studies also discussed.
    Matched MeSH terms: Tocotrienols
  16. Rasool AH, Rahman AR, Yuen KH, Wong AR
    Arch Pharm Res, 2008 Sep;31(9):1212-7.
    PMID: 18806966 DOI: 10.1007/s12272-001-1291-5
    The tocotrienol vitamin E has potent antioxidant property, however absorption is low due to high lipid solubility. A self emulsifying preparation of tocotrienol rich vitamin E (SF-TRE) had been reported to increase their bioavailability. This randomized, placebo controlled, blinded end point clinical study aimed to determine the effects of 50, 100 and 200 mg daily of SF-TRE and placebo for two months on arterial compliance and vitamin E blood levels. Assessment of arterial compliance by carotid femoral pulse wave velocity (PWV) and augmentation index (AI), plasma vitamin E, serum total cholesterol and low density lipoprotein cholesterol were taken before and after 2 months' treatment in 36 healthy males. Un-supplemented tocotrienol levels were low, after treatment, all SF-TRE treated groups had significantly higher plasma alpha, delta and delta tocotrienol concentrations compared to placebo. Augmentation index change from baseline to end of treatment for groups placebo, 50, 100, and 200 mg were 2.22+/-1.54, -6.59+/-2.84, -8.72+/-3.77, and -6.27+/-2.67% respectively (p=0.049, 0.049, and 0.047 respectively). Groups 100 and 200 mg showed significant improvement after treatment with pulse wave velocity reductions of 0.77 m/s and 0.65 m/s respectively (p=0.007 and p=0.002). There was no effect of SF-TRE on serum lipids. We conclude that there was a trend towards improvement in arterial compliance with 2 months' of SF-TRE.
    Matched MeSH terms: Tocotrienols/administration & dosage*; Tocotrienols/blood*; Tocotrienols/pharmacokinetics
  17. Wong YF, Makahleh A, Saad B, Ibrahim MN, Rahim AA, Brosse N
    Talanta, 2014 Dec;130:299-306.
    PMID: 25159413 DOI: 10.1016/j.talanta.2014.07.021
    A sensitive and rapid reversed-phase ultra performance liquid chromatographic (UPLC) method for the simultaneous determination of tocopherols (α-, β-, γ-, δ-), tocotrienols (α-, β-, γ-, δ-), α-tocopherol acetate and α-tocopherol nicotinate is described. The separation was achieved using a Kinetex pentafluorophenyl (PFP) column (150 × 2.1mm, 2.6 µm) with both photodiode array (PDA) and fluorescence (FL) detectors that were connected in series. Column was thermostated at 42°C. Under a gradient system consisting of methanol and water at a constant flow rate of 0.38 mL min(-1), all the ten analytes were well separated in less than 9.5 min. The method was validated in terms of linearity, limits of detection and quantitation, precision and recoveries. Calibration curves of the ten compounds were well correlated (r(2)>0.999) within the range of 100 to 25,000 μg L(-1) for α-tocopherol acetate and α-tocopherol nicotinate, 10 to 25,000 μg L(-1) for α-tocotrienol and 5 to 25,000 μg L(-1) for the other components. The method is simple and sensitive with detection limits (S/N, 3) of 1.0 to 3.0 μg L(-1) (FL detection) and 30 to 74 μg L(-1) (PDA detection). Relative standard deviations for intra- and inter-day retention times (<1%) and peak areas (≤ 4%) were obtained. The method was successfully applied to the determination of vitamin E in vegetable oils (extra virgin olive, virgin olive, pomace olive, blended virgin and refined olive, sunflower, soybean, palm olein, carotino, crude palm, walnut, rice bran and grape seed), margarines and supplements.
    Matched MeSH terms: Tocotrienols/analysis*; Tocotrienols/isolation & purification
  18. Sundram K, Nor RM
    Methods Mol Biol, 2002;186:221-32.
    PMID: 12013770
    Matched MeSH terms: Tocotrienols/analysis*; Tocotrienols/blood
  19. Nair RS, Billa N, Leong CO, Morris AP
    Pharm Dev Technol, 2021 Feb;26(2):243-251.
    PMID: 33274672 DOI: 10.1080/10837450.2020.1860087
    Tocotrienol (TRF) ethosomes were developed and evaluated in vitro for potential transdermal delivery against melanoma. The optimised TRF ethosomal size ranged between 64.9 ± 2.2 nm to 79.6 ± 3.9 nm and zeta potential (ZP) between -53.3 mV to -62.0 ± 2.6 mV. Characterisation of the ethosomes by ATR-FTIR indicated the successful formation of TRF-ethosomes. Scanning electron microscopy (SEM) images demonstrated the spherical shape of ethosomes, and the entrapment efficiencies of all the formulations were above 66%. In vitro permeation studies using full-thickness human skin showed that the permeation of gamma-T3 from the TRF ethosomal formulations was significantly higher (p 
    Matched MeSH terms: Tocotrienols/administration & dosage*; Tocotrienols/pharmacokinetics
  20. Chin KY, Pang KL, Soelaiman IN
    Adv Exp Med Biol, 2016;928:97-130.
    PMID: 27671814
    Tocotrienol is a member of vitamin E family and is well-known for its antioxidant and anti-inflammatory properties. It is also a suppressor of mevalonate pathway responsible for cholesterol and prenylated protein synthesis. This review aimed to discuss the health beneficial effects of tocotrienol, specifically in preventing or treating hyperlipidaemia, diabetes mellitus, osteoporosis and cancer with respect to these properties. Evidence from in vitro, in vivo and human studies has been examined. It is revealed that tocotrienol shows promising effects in preventing or treating the health conditions previously mentioned in in vivo and in vitro models. In some cases, alpha-tocopherol attenuates the biological activity of tocotrienol. Except for its cholesterol-lowering effects, data on the health-promoting effects of tocotrienol in human are limited. As a conclusion, the encouraging results on the health beneficial effects of tocotrienol should motivate researchers to explore its potential use in human.
    Matched MeSH terms: Tocotrienols/pharmacology; Tocotrienols/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links