Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Ong CH, Tham CL, Harith HH, Firdaus N, Israf DA
    Eur J Pharmacol, 2021 Nov 15;911:174510.
    PMID: 34560077 DOI: 10.1016/j.ejphar.2021.174510
    Transforming growth factor-beta (TGF-β) plays multiple homeostatic roles in the regulation of inflammation, proliferation, differentiation and would healing of various tissues. Many studies have demonstrated that TGF-β stimulates activation and proliferation of fibroblasts, which result in extracellular matrix deposition. Its increased expression can result in many fibrotic diseases, and the level of expression is often correlated with disease severity. On this basis, inhibition of TGF-β and its activity has great therapeutic potential for the treatment of various fibrotic diseases such as pulmonary fibrosis, renal fibrosis, systemic sclerosis and etc. By understanding the molecular mechanism of TGF-β signaling and activity, researchers were able to develop different strategies in order to modulate the activity of TGF-β. Antisense oligonucleotide was developed to target the mRNA of TGF-β to inhibit its expression. There are also neutralizing monoclonal antibodies that can target the TGF-β ligands or αvβ6 integrin to prevent binding to receptor or activation of latent TGF-β respectively. Soluble TGF-β receptors act as ligand traps that competitively bind to the TGF-β ligands. Many small molecule inhibitors have been developed to inhibit the TGF-β receptor at its cytoplasmic domain and also intracellular signaling molecules. Peptide aptamer technology has been used to target downstream TGF-β signaling. Here, we summarize the underlying mechanism of TGF-β-induced fibrosis and also review various strategies of inhibiting TGF-β in both preclinical and clinical studies.
    Matched MeSH terms: Transforming Growth Factor beta*
  2. Hassan MDS, Razali N, Abu Bakar AS, Abu Hanipah NF, Agarwal R
    Exp Biol Med (Maywood), 2023 Aug;248(16):1425-1436.
    PMID: 37873757 DOI: 10.1177/15353702231199466
    Connective tissue growth factor (CTGF) is a distinct signaling molecule modulating many physiological and pathophysiological processes. This protein is upregulated in numerous fibrotic diseases that involve extracellular matrix (ECM) remodeling. It mediates the downstream effects of transforming growth factor beta (TGF-β) and is regulated via TGF-β SMAD-dependent and SMAD-independent signaling routes. Targeting CTGF instead of its upstream regulator TGF-β avoids the consequences of interfering with the pleotropic effects of TGF-β. Both CTGF and its upstream mediator, TGF-β, have been linked with the pathophysiology of glaucomatous optic neuropathy due to their involvement in the regulation of ECM homeostasis. The excessive expression of these growth factors is associated with glaucoma pathogenesis via elevation of the intraocular pressure (IOP), the most important risk factor for glaucoma. The raised in the IOP is due to dysregulation of ECM turnover resulting in excessive ECM deposition at the site of aqueous humor outflow. It is therefore believed that CTGF could be a potential therapeutic target in glaucoma therapy. This review highlights the CTGF biology and structure, its regulation and signaling, its association with the pathophysiology of glaucoma, and its potential role as a therapeutic target in glaucoma management.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  3. Wang H, Chen M, Sang X, You X, Wang Y, Paterson IC, et al.
    Eur J Med Chem, 2020 Apr 01;191:112154.
    PMID: 32092587 DOI: 10.1016/j.ejmech.2020.112154
    Transforming growth factor-β (TGF-β) is a member of a superfamily of pleiotropic proteins that regulate multiple cellular processes such as growth, development and differentiation. Following binding to type I and II TGF-β serine/threonine kinase receptors, TGF-β activates downstream signaling cascades involving both SMAD-dependent and -independent pathways. Aberrant TGF-β signaling is associated with a variety of diseases, such as fibrosis, cardiovascular disease and cancer. Hence, the TGF-β signaling pathway is recognized as a potential drug target. Various organic molecules have been designed and developed as TGF-β signaling pathway inhibitors and they function by either down-regulating the expression of TGF-β or by inhibiting the kinase activities of the TGF-β receptors. In this review, we discuss the current status of research regarding organic molecules as TGF-β inhibitors, focusing on the biological functions and the binding poses of compounds that are in the market or in the clinical or pre-clinical phases of development.
    Matched MeSH terms: Transforming Growth Factor beta/antagonists & inhibitors*; Transforming Growth Factor beta/metabolism; Receptors, Transforming Growth Factor beta/antagonists & inhibitors*; Receptors, Transforming Growth Factor beta/metabolism
  4. Gupta G, Chellappan DK, Singh SK, Gupta PK, Kesari KK, Jha NK, et al.
    Nanomedicine (Lond), 2021 10;16(25):2243-2247.
    PMID: 34547920 DOI: 10.2217/nnm-2021-0254
    Matched MeSH terms: Transforming Growth Factor beta*
  5. Muniyandi RC, Zin AM
    Pak J Biol Sci, 2011 Dec 15;14(24):1100-8.
    PMID: 22335049
    Ligand-Receptor Networks of TGF-beta plays essential role in transmitting a wide range of extracellular signals that affect many cellular processes such as cell growth. However, the modeling of these networks with conventional approach such as ordinary differential equations has not taken into account, the spatial structure and stochastic behavior of processes involve in these networks. Membrane computing as the alternatives approach provides spatial structure for molecular computation in which processes are evaluated in a non-deterministic and maximally parallel way. This study is carried out to evaluate the membrane computing model of Ligand-Receptor Networks of TGF-beta with model checking approach. The results show that membrane computing model has sustained the behaviors and properties of Ligand-Receptor Networks of TGF-beta. This reinforce that membrane computing is capable in analyzing processes and behaviors in hierarchical structure of cell such as Ligand-Receptor Networks of TGF-beta better than the deterministic approach of conventional mathematical models.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*; Receptors, Transforming Growth Factor beta/metabolism*
  6. Wong SF, Lai LC
    Pathology, 2001 Feb;33(1):85-92.
    PMID: 11280615
    Transforming growth factor beta (TGFbeta) is secreted as a large latent precursor from both normal and transformed cells which needs to be activated for biological activity. The active TGFbeta binds either directly to TbetaR-II or indirectly by binding to beta-glycan which then presents the TGFbeta to TbetaR-II. Formation of the TGFbeta-TbetaR-II complex rapidly leads to phosphorylation of TbetaR-I. TbetaR-I, in turn, phosphorylates receptor-specific Smads and induces their translocation into the nucleus. TGFbeta is able to act as a growth stimulator or inhibitor and elicits a broad spectrum of biological effects on various cell types. However, these cells may lose their sensitivity and responsiveness to TGFbeta. Down-regulation or loss of functional receptors, aberrant signal transduction pathways due to Smad mutations, loss of the cell's ability to activate latent TGFbeta, loss of the peptide itself or functional genes that control the transcription and translation of TGFbeta may contribute to development of cancer.
    Matched MeSH terms: Transforming Growth Factor beta/physiology*; Receptors, Transforming Growth Factor beta/metabolism
  7. Mostofa F, Yasid NA, Shamsi S, Ahmad SA, Mohd-Yusoff NF, Abas F, et al.
    Molecules, 2022 Nov 28;27(23).
    PMID: 36500396 DOI: 10.3390/molecules27238304
    The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
    Matched MeSH terms: Transforming Growth Factor beta/genetics; Transforming Growth Factor beta/metabolism
  8. Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF
    Cancers (Basel), 2018 Jul 27;10(8).
    PMID: 30060514 DOI: 10.3390/cancers10080247
    The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed.
    Matched MeSH terms: Transforming Growth Factor beta
  9. Nordin A, Chowdhury SR, Saim AB, Bt Hj Idrus R
    PMID: 32384749 DOI: 10.3390/ijerph17093229
    Over-induction of epithelial to mesenchymal transition (EMT) by tumor growth factor beta (TGFβ) in keratinocytes is a key feature in keloid scar. The present work seeks to investigate the effect of Kelulut honey (KH) on TGFβ-induced EMT in human primary keratinocytes. Image analysis of the real time observation of TGFβ-induced keratinocytes revealed a faster wound closure and individual migration velocity compared to the untreated control. TGFβ-induced keratinocytes also have reduced circularity and display a classic EMT protein expression. Treatment of 0.0015% (v/v) KH reverses these effects. In untreated keratinocytes, KH resulted in slower initial wound closure and individual migration velocity, which sped up later on, resulting in greater wound closure at the final time point. KH treatment also led to greater directional migration compared to the control. KH treatment caused reduced circularity in keratinocytes but displayed a partial EMT protein expression. Taken together, the findings suggest the therapeutic potential of KH in preventing keloid scar by attenuating TGFβ-induced EMT.
    Matched MeSH terms: Transforming Growth Factor beta
  10. Emami A, Halim AS, Salahshourifar I, Yussof SJ, Khoo TL, Kannan TP
    Arch. Dermatol. Res., 2012 Sep;304(7):541-7.
    PMID: 22805880 DOI: 10.1007/s00403-012-1262-0
    Keloid is a complex condition with environmental and genetic risk-contributing factors. Two candidate genes, TGFβ1 and SMAD4, located in the same signaling pathway are highly expressed in the keloid fibroblast cells. In a case-control design, TGFβ1 haplotypes showed association with the risk of keloid in the present study. The CC haplotype, composed of both c.29C>T and -509T>C variants, was observed more frequently among cases (Corrected p = 0.037, OR = 2.07, 95 % CI = 0.87-4.93), showing a 4.5-fold increased risk for keloid. The AG genotype of the SMAD4 c.5131A>G variant showed a trend of significance (p = 0.0573, OR = 1.75, 95 % CI = 0.99-3.13). Taken together, either of these variants is most probably causative at the expression level or is in linkage disequilibrium with other causative variants in a complex pattern together with the environmental factors that contribute to the condition. To the best of our knowledge, there is only one documented report on a relationship between TGFβ1 and keloid with no association within the Caucasian population, while there have not been any reports for SMAD4. Therefore, the present study is likely the first research showing a significant association between TGFβ1 variants and keloids in the Malay population.
    Matched MeSH terms: Transforming Growth Factor beta/genetics*
  11. Li Z, Allingham RR, Nakano M, Jia L, Chen Y, Ikeda Y, et al.
    Hum Mol Genet, 2015 Jul 01;24(13):3880-92.
    PMID: 25861811 DOI: 10.1093/hmg/ddv128
    Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10(-33)), we observed one SNP showing significant association to POAG (CDC7-TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10(-8)). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis.
    Matched MeSH terms: Receptors, Transforming Growth Factor beta/genetics*
  12. Muniyandi RC, Zin AM, Sanders JW
    Biosystems, 2013 Dec;114(3):219-26.
    PMID: 24120990 DOI: 10.1016/j.biosystems.2013.09.008
    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*
  13. Syahputra RA, Harahap U, Harahap Y, Gani AP, Dalimunthe A, Ahmed A, et al.
    Molecules, 2023 May 24;28(11).
    PMID: 37298779 DOI: 10.3390/molecules28114305
    Doxorubicin (DOX) has been extensively utilized in cancer treatment. However, DOX administration has adverse effects, such as cardiac injury. This study intends to analyze the expression of TGF, cytochrome c, and apoptosis on the cardiac histology of rats induced with doxorubicin, since the prevalence of cardiotoxicity remains an unpreventable problem due to a lack of understanding of the mechanism underlying the cardiotoxicity result. Vernonia amygdalina ethanol extract (VAEE) was produced by soaking dried Vernonia amygdalina leaves in ethanol. Rats were randomly divided into seven groups: K- (only given doxorubicin 15 mg/kgbw), KN (water saline), P100, P200, P400, P4600, and P800 (DOX 15 mg/kgbw + 100, 200, 400, 600, and 800 mg/kgbw extract); at the end of the study, rats were scarified, and blood was taken directly from the heart; the heart was then removed. TGF, cytochrome c, and apoptosis were stained using immunohistochemistry, whereas SOD, MDA, and GR concentration were evaluated using an ELISA kit. In conclusion, ethanol extract might protect the cardiotoxicity produced by doxorubicin by significantly reducing the expression of TGF, cytochrome c, and apoptosis in P600 and P800 compared to untreated control K- (p < 0.001). These findings suggest that Vernonia amygdalina may protect cardiac rats by reducing the apoptosis, TGF, and cytochrome c expression while not producing the doxorubicinol as doxorubicin metabolite. In the future, Vernonia amygdalina could be used as herbal preventive therapy for patient administered doxorubicin to reduce the incidence of cardiotoxicity.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism
  14. Inayat-Hussain SH, Cohen GM, Cain K
    Cell Biol Toxicol, 1999;15(6):381-7.
    PMID: 10811533
    There is now a wealth of information regarding the apoptotic mode of cell death and its importance in toxicological studies in many mammalian organs including the liver. In this study, we investigated the modulatory effects of the heavy metal Zn2+ on transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in primary rat hepatocytes. Apoptosis induced by TGF-beta1 (1 ng/ml) in hepatocytes was accompanied by nuclear condensation as assessed morphologically by staining with Hoechst 33258 and DNA cleavage as detected biochemically by in situ end-labeling, field inversion and conventional gel electrophoresis. Pretreatment with 100 micromol/L Zn2+ abrogated the nuclear condensation, in situ end-labeling, and DNA laddering in TGF-beta1-treated hepatocytes. Surprisingly, Zn2+ did not inhibit the formation of high-molecular-weight DNA fragments (30-50 kbp to 250-300 kbp). These data provide evidence that Zn2+ exerts its effects on the endonucleases that act downstream in the execution phase of TGF-beta1-induced apoptosis in hepatocytes.
    Matched MeSH terms: Transforming Growth Factor beta/physiology*
  15. Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC, et al.
    Mol Med Rep, 2015 May;11(5):3808-13.
    PMID: 25585520 DOI: 10.3892/mmr.2015.3193
    Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*; Receptors, Transforming Growth Factor beta/antagonists & inhibitors*; Receptors, Transforming Growth Factor beta/metabolism
  16. Wong SF, Seow HF, Lai LC
    Malays J Pathol, 2003 Dec;25(2):129-34.
    PMID: 16196369
    Transforming growth factor-beta (TGFbeta) is present, predominantly in latent forms, in normal and malignant breast tissue. The mechanisms by which latent TGFbeta is activated physiologically remain largely an enigma. The objective of this study was to assess whether the proteases, cathepsin D and prostate specific antigen (PSA) could activate latent TGFbeta1 and TGFbeta2 in conditioned media of the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 human breast cancer cell lines, newly purchased from ATCC. Both of the cell lines were seeded in 6-well plates 2 days prior to treatment with varying concentrations of cathepsin D and PSA. Active TGFbeta1 and TGFbeta2 in the media were then measured by ELISA after 4, 8, 24 and 72 hours of treatment. TGFbeta1 and TGFbeta2 mRNA expression of both cell lines were measured by RT-PCR to determine whether any increase in level of active TGFbeta1 and TGFbeta2 was due to increased production. There was a significant increase in only active TGFbeta2 levels in the MDA-MB-231 cell line with both treatments. Cathepsin D and PSA did not have any effect on TGFbeta1 and TGFbeta2 mRNA expression. Cathepsin D and PSA were unable to activate latent TGFbeta1 and TGFbeta2 in these two breast cancer cell lines. A constant level of TGFbeta2 mRNA in the control and treated MDA-MB-231 cells suggests that the increase in level of active TGFbeta2 was not a result of increased production but was likely to be due to activation by a mechanism independent of cathepsin D and PSA.
    Matched MeSH terms: Transforming Growth Factor beta/genetics; Transforming Growth Factor beta/metabolism*
  17. Zhou J, Shaikh LH, Neogi SG, McFarlane I, Zhao W, Figg N, et al.
    Hypertension, 2015 May;65(5):1103-10.
    PMID: 25776071 DOI: 10.1161/HYP.0000000000000025
    Common somatic mutations in CACNAID and ATP1A1 may define a subgroup of smaller, zona glomerulosa (ZG)-like aldosterone-producing adenomas. We have therefore sought signature ZG genes, which may provide insight into the frequency and pathogenesis of ZG-like aldosterone-producing adenomas. Twenty-one pairs of zona fasciculata and ZG and 14 paired aldosterone-producing adenomas from 14 patients with Conn's syndrome and 7 patients with pheochromocytoma were assayed by the Affymetrix Human Genome U133 Plus 2.0 Array. Validation by quantitative real-time polymerase chain reaction was performed on genes >10-fold upregulated in ZG (compared with zona fasciculata) and >10-fold upregulated in aldosterone-producing adenomas (compared with ZG). DACH1, a gene associated with tumor progression, was further analyzed. The role of DACH1 on steroidogenesis, transforming growth factor-β, and Wnt signaling activity was assessed in the human adrenocortical cell line, H295R. Immunohistochemistry confirmed selective expression of DACH1 in human ZG. Silencing of DACH1 in H295R cells increased CYP11B2 mRNA levels and aldosterone production, whereas overexpression of DACH1 decreased aldosterone production. Overexpression of DACH1 in H295R cells activated the transforming growth factor-β and canonical Wnt signaling pathways but inhibited the noncanonical Wnt signaling pathway. Stimulation of primary human adrenal cells with angiotensin II decreased DACH1 mRNA expression. Interestingly, there was little overlap between our top ZG genes and those in rodent ZG. In conclusion, (1) the transcriptome profile of human ZG differs from rodent ZG, (2) DACH1 inhibits aldosterone secretion in human adrenals, and (3) transforming growth factor-β signaling pathway is activated in DACH1 overexpressed cells and may mediate inhibition of aldosterone secretion in human adrenals.
    Matched MeSH terms: Transforming Growth Factor beta/biosynthesis; Transforming Growth Factor beta/genetics*
  18. Veerasamy T, Eugin Simon S, Tan KO
    Int J Biochem Cell Biol, 2021 08;137:106016.
    PMID: 34082133 DOI: 10.1016/j.biocel.2021.106016
    Conventional chemotherapy relies on the cytotoxicity of chemo-drugs to inflict destructive effects on tumor cells. However, as most tumor cells develop resistance to chemo-drugs, small doses of chemo-drugs are unlikely to provide significant clinical benefits in cancer treatment while high doses of chemo-drugs have been shown to impact normal human cells negatively due to the non-specific nature and cytotoxicity associated with chemo-drugs. To overcome this challenge, sensitizations of tumor cells with bioactive molecules that specifically target the pro-survival and pro-apoptosis signaling pathways of the tumor cells are likely to increase the therapeutic impacts and improve the clinical outcomes by reducing the dependency and adverse effects associated with using high doses of chemo-drugs in cancer treatment. This review focuses on emerging strategies to enhance the sensitization of tumor cells toward cancer therapies based on our understanding of tumor cell biology and underlying signaling pathways.
    Matched MeSH terms: Transforming Growth Factor beta/genetics; Transforming Growth Factor beta/metabolism
  19. Tie, Tung Hing, Rusliza Basir, Chuah, Yaw Kuang, Herni Talib, Norshariza Nordin
    MyJurnal
    Activin proteins are members of the transforming growth factor-β family. Activin A is involved in several biological responses including wound repair, cell death, proliferation and differentiation of many cell types. Biologically active activins consist of homodimers or heterodimers of two beta (β) subunits that are linked together by a single covalent disulphide bond. The subunits in humans are βA, βB, βC and βE. As an example, a combination of two βA subunits will produce a unit of activin A. These proteins are found in most cells of body such as macrophage and activated circulating monocytes. Their role in inflammation can be categorised into two types, either pro- or anti-inflammatory agents, depending on the cell type and phase. Activin signals are kept in balance by antagonist follistatin (Fst), which is a glycoprotein expressed in tissues and encoded by the follistatin gene in humans.
    Matched MeSH terms: Transforming Growth Factor beta
  20. Hussan F, Teoh SL, Muhamad N, Mazlan M, Latiff AA
    J Wound Care, 2014 Aug;23(8):400, 402, 404-7.
    PMID: 25139598 DOI: 10.12968/jowc.2014.23.8.400
    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract.
    Matched MeSH terms: Transforming Growth Factor beta/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links