Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Aldoghachi AF, Chong ZX, Yeap SK, Cheong SK, Ho WY, Ong AHK
    Int J Mol Sci, 2023 Jan 05;24(2).
    PMID: 36674525 DOI: 10.3390/ijms24021012
    Cancer recurrence and drug resistance following treatment, as well as metastatic forms of cancer, are trends that are commonly encountered in cancer management. Amidst the growing popularity of personalized medicine and targeted therapy as effective cancer treatment, studies involving the use of stem cells in cancer therapy are gaining ground as promising translational treatment options that are actively pursued by researchers due to their unique tumor-homing activities and anti-cancer properties. Therefore, this review will highlight cancer interactions with commonly studied stem cell types, namely, mesenchymal stroma/stem cells (MSC), induced pluripotent stem cells (iPSC), iPSC-derived MSC (iMSC), and cancer stem cells (CSC). A particular focus will be on the effects of paracrine signaling activities and exosomal miRNA interaction released by MSC and iMSCs within the tumor microenvironment (TME) along with their therapeutic potential as anti-cancer delivery agents. Similarly, the role of exosomal miRNA released by CSCs will be further discussed in the context of its role in cancer recurrence and metastatic spread, which leads to a better understanding of how such exosomal miRNA could be used as potential forms of non-cell-based cancer therapy.
    Matched MeSH terms: Tumor Microenvironment
  2. Abdullah Zubir AZ, Whawell SA, Wong TS, Khurram SA
    Oral Dis, 2020 Nov;26(8):1668-1676.
    PMID: 32562323 DOI: 10.1111/odi.13500
    BACKGROUND: The expression of XCR1 receptor and its metamorphic ligand lymphotactin (hLtn) has been shown in cancers but their precise role in tumorigenesis is poorly understood including the significance of the physiologically existing hLtn monomeric (CC3) and dimeric (W55D) confirmations where the latter thought to function as the receptor antagonist. The aim of this study was to explore the functional role of bioengineered hLtn variants and the role of fibroblasts in XCR1/hLtn expression regulation in oral cancer cells (OCCL).

    MATERIAL AND METHODS: qRT-PCR and flow cytometry were performed to evaluate mRNA and protein expression of XCR1 and hLtn. Recombinant hLtn variants (wild-type, CC3 and W55D mutant) were designed, expressed, purified and evaluated using proliferation, adhesion and chemotaxis assays. XCR1 and hLtn expression regulation by fibroblasts was determined using indirect co-culture. XCR1 and hLtn expression in primary and metastatic OSCC tissue was assessed using immunohistochemistry.

    RESULTS: hLtn caused a significant decrease in OCCL XCR1 surface protein expression. hLtn CC3 mutant was highly functional facilitating proliferation and migration. Conditioned media from primary cancer-associated and senescent fibroblasts significantly upregulated XCR1 and hLtn mRNA expression in OCCL. Immunohistochemistry revealed higher XCR1 and hLtn expression in metastatic tumour deposits and surrounding stroma compared to primary OSCC tissue.

    CONCLUSIONS: The development of hLtn biological mutants, regulation of XCR1 expression by its ligand hLtn and crosstalk with fibroblasts are novel findings suggesting an important role for the XCR1/hLtn axis within the OSCC tumour microenvironment. These discoveries build upon previous studies and suggest that the hLtn/XCR1 axis has a significant role in stromal crosstalk and OSCC progression.

    Matched MeSH terms: Tumor Microenvironment
  3. Low LE, Wu J, Lee J, Tey BT, Goh BH, Gao J, et al.
    J Control Release, 2020 Aug 10;324:69-103.
    PMID: 32423874 DOI: 10.1016/j.jconrel.2020.05.014
    The recent designs of dynamic nanoassemblies exploiting the tumor-targeting properties have received increasing attention for tumor imaging and therapy due to their tumor-specific delivery and enhanced antitumor efficacy. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the nano-bio interactions in the tumor microenvironment (TME) remain poorly understood. This review aims to provide an overview of the development of tumor-responsive nanoassemblies towards the imaging, therapy and TME modulation in the tumor site. The tumor biology leading to TME formation and the potential TME properties for the practicable design of tumor-targeting nanoassemblies has been outlined. Furthermore, the various approaches for TME modification and the realization via dynamic nanoassemblies for enhanced tumor therapy were reviewed. Lastly, the prospects of these methods were briefly discussed. These strategies may inspire the development of new combinational cancer therapeutics.
    Matched MeSH terms: Tumor Microenvironment
  4. Yahaya MAF, Lila MAM, Ismail S, Zainol M, Afizan NARNM
    J Immunol Res, 2019;2019:2368249.
    PMID: 30931335 DOI: 10.1155/2019/2368249
    Tumour-associated macrophage (TAM) serves as the site in which most inflammatory cells coreside. It plays an important role in determining the progression and metastasis of a tumour. The characteristic of TAM is largely dependent on the stimuli present in its tumour microenvironment (TME). Under this environment, however, M2 macrophages are found to be in abundance compared to M1 macrophages which later promote tumour progression. Numerous studies have elucidated the relationship between TAM and the progression of tumour; hence, TAM has now been the subject of interest among researchers for anticancer therapy. This review discusses the role of TAM in colorectal cancer (CRC) and some of the potential candidates that could reeducate TAM to fight against CRC. It is with hope that this review will serve as the foundation in understanding TAM in CRC and helping other researchers to select the most suitable candidate to reeducate TAM that could assist in enhancing the tumouricidal activity of M1 macrophage and eventually repress the development of CRC.
    Matched MeSH terms: Tumor Microenvironment/immunology*
  5. Vazifehmand R, Ali DS, Othman Z, Chau DM, Stanslas J, Shafa M, et al.
    J Neurovirol, 2022 Dec;28(4-6):566-582.
    PMID: 35951174 DOI: 10.1007/s13365-022-01089-w
    Glioblastoma multiforme is the most aggressive astrocytes brain tumor. Glioblastoma cancer stem cells and hypoxia conditions are well-known major obstacles in treatment. Studies have revealed that non-coding RNAs serve a critical role in glioblastoma progression, invasion, and resistance to chemo-radiotherapy. The present study examined the expression levels of microRNAs (in normoxic condition) and long non-coding RNAs (in normoxic and hypoxic conditions) in glioblastoma stem cells treated with the HSV-G47∆. The expression levels of 43 miRNAs and 8 lncRNAs isolated from U251-GBM-CSCs were analyzed using a miRCURY LNA custom PCR array and a quantitative PCR assay, respectively. The data revealed that out of 43 miRNAs that only were checked in normoxic condition, the only 8 miRNAs, including miR-7-1, miR-let-7b, miR-130a, miR-137, miR-200b, miR-221, miR-222, and miR-874, were markedly upregulated. The expression levels of lncRNAs, including LEF1 antisense RNA 1 (LEF1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein coding RNA 470 (LINC00470), tumor suppressor candidate 7 (TUSC7), HOX transcript antisense RNA (HOTAIR), nuclear paraspeckle assembly transcript 1 (NEAT1), and X inactive specific transcript (XIST), were markedly downregulated in the hypoxic microenvironment, and H19-imprinted maternally expressed transcript (H19) was not observed to be dysregulated in this environment. Under normoxic conditions, LEF1-AS1, MALAT1, LINC00470, H19, HOTAIR, NEAT1, and XIST were downregulated and TUSC7 was not targeted by HSV-G47∆. Overall, the present data shows HSVG47Δ treatment deregulates non-coding RNA expression in GBM-CSC tumor microenvironments.
    Matched MeSH terms: Tumor Microenvironment/genetics
  6. Hussain Z, Rahim MA, Jan N, Shah H, Rawas-Qalaji M, Khan S, et al.
    J Control Release, 2021 07 10;335:130-157.
    PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018
    Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
    Matched MeSH terms: Tumor Microenvironment
  7. Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, et al.
    Int J Pharm, 2021 Sep 05;606:120848.
    PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848
    Photothermal therapy (PTT) is a minimally invasive procedure for treating cancer. The two significant prerequisites of PTT are the photothermal therapeutic agent (PTA) and near-infrared radiation (NIR). The PTA absorbs NIR, causing hyperthermia in the malignant cells. This increased temperature at the tumor microenvironment finally results in tumor cell damage. Nanoparticles play a crucial role in PTT, aiding in the passive and active targeting of the PTA to the tumor microenvironment. Through enhanced permeation and retention effect and surface-engineering, specific targeting could be achieved. This novel delivery tool provides the advantages of changing the shape, size, and surface attributes of the carriers containing PTAs, which might facilitate tumor regression significantly. Further, inclusion of surface engineering of nanoparticles is facilitated through ligating ligands specific to overexpressed receptors on the cancer cell surface. Thus, transforming nanoparticles grants the ability to combine different treatment strategies with PTT to enhance cancer treatment. This review emphasizes properties of PTAs, conjugated biomolecules of PTAs, and the combinatorial techniques for a better therapeutic effect of PTT using the nanoparticle platform.
    Matched MeSH terms: Tumor Microenvironment
  8. Zaidi NE, Shazali NAH, Leow TC, Osman MA, Ibrahim K, Cheng WH, et al.
    Cells, 2022 Nov 10;11(22).
    PMID: 36428985 DOI: 10.3390/cells11223556
    Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer-macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis.
    Matched MeSH terms: Tumor Microenvironment
  9. Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, et al.
    Crit Rev Biotechnol, 2016 Jun;36(3):553-65.
    PMID: 25641330 DOI: 10.3109/07388551.2014.993588
    Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
    Matched MeSH terms: Tumor Microenvironment
  10. Tan GW, Visser L, Tan LP, van den Berg A, Diepstra A
    Pathogens, 2018 04 13;7(2).
    PMID: 29652813 DOI: 10.3390/pathogens7020040
    The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
    Matched MeSH terms: Tumor Microenvironment
  11. Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, et al.
    Cancers (Basel), 2021 Feb 07;13(4).
    PMID: 33562376 DOI: 10.3390/cancers13040670
    The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.
    Matched MeSH terms: Tumor Microenvironment
  12. Muniandy, Kalaivani, Sankar, Prabu Siva, Lian, Benedict Shi Xiang, Khoo, Alan Soo-Beng, Balakrishnan, Venugopal, Mohana-Kumaran, Nethia
    Trop Life Sci Res, 2016;27(11):125-130.
    MyJurnal
    Spheroids have been shown to recapitulate the tumour in vivo with properties
    such as the tumour microenvironment, concentration gradients, and tumour phenotype. As
    such, it can serve as a platform for determining the growth and invasion behaviour pattern
    of the cancer cells as well as be utilised for drug sensitivity assays; capable of exhibiting
    results that are closer to what is observed in vivo compared to two-dimensional (2D) cell
    culture assays. This study focused on establishing a three-dimensional (3D) cell culture
    model using the Nasopharyngeal Carcinoma (NPC) cell line, HK1 and analysing its growth
    and invasion phenotypes. The spheroids will also serve as a model to elucidate their
    sensitivity to the chemotherapeutic drug, Flavopiridol. The liquid overlay method was
    employed to generate the spheroids which was embedded in bovine collagen I matrix for
    growth and invasion phenotypes observation. The HK1 cells formed compact spheroids
    within 72 hours. Our observation from the 3 days experiments revealed that the spheroids
    gradually grew and invaded into the collagen matrix, showing that the HK1 spheroids are
    capable of growth and invasion. Progressing from these experiments, the HK1 spheroids
    were employed to perform a drug sensitivity assay using the chemotherapeutic drug,
    Flavopiridol. The drug had a dose-dependent inhibition on spheroid growth and invasion.
    Matched MeSH terms: Tumor Microenvironment
  13. Tang W, Liu H, Li X, Ooi TC, Rajab NF, Cao H, et al.
    Aging (Albany NY), 2022 Nov 14;14(21):8688-8699.
    PMID: 36375474 DOI: 10.18632/aging.204380
    BACKGROUND: A complex of Zn and carnosine, called Zinc-L-carnosine (ZnC), enjoys a wide application as part of a Zn supplement therapeutic method as well as in treating peptic ulcers. However, researches fail to confirm the biological functions possessed by ZnC as well as tumor immune microenvironment in colorectal cancer (CRC).

    METHODS: Cell counting kit 8(CCK8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were conducted to study the influence of ZnC in the proliferating, invading and migrating processes of CRC cell lines (HCT116, LOVO) in vitro. The antitumor activity ZnC as well as its effects on tumor immune microenvironment were then assessed using CRC subcutaneous tumors in the C57BL/6 mouse model.

    RESULTS: According to CCK8, EdU, transwell and wound healing assays, ZnC inhibited CRC cell lines in terms of proliferation, invasion and migration. ZnC could inhibit miR-570 for up-regulating PD-L1 expression. In vivo experiments showed that gavage (100 mg/kg, once every day) of ZnC inhibited the tumor growth of CRC, and the combination of ZnC and anti-PD1 therapy significantly improved the efficacy exhibited by anti-PD1 in treating CRC. In addition, mass cytometry results showed that immunosuppressive cells including regulatory T cells (tregs), bone marrow-derived suppressor cells (MDSC), and M2 macrophages decreased whereas CD8+ T cells elevated after adding ZnC.

    CONCLUSIONS: The present study reveals that ZnC slows the progression of CRC by inhibiting CRC cells in terms of proliferation, invasion and migration, meanwhile up-regulating PD-L1 expression via inhibiting miR-570. The ZnC-anti-PD1 co-treatment assists in synergically increasing anti-tumor efficacy in CRC therapy.

    Matched MeSH terms: Tumor Microenvironment
  14. Ch'ng ES, Tuan Sharif SE, Jaafar H
    Virchows Arch., 2013 Mar;462(3):257-67.
    PMID: 23283409 DOI: 10.1007/s00428-012-1362-4
    Tumor-associated macrophages play a crucial role in breast cancer progression and tumor angiogenesis. However, evaluation of tumor-associated macrophages incorporating their histological locations is lacking. The aim of this study was to clarify whether macrophages in tumor stroma and macrophages in tumor cell nests have distinctive properties in relation to pertinent breast cancer clinicopathological parameters and tumor angiogenesis. In 94 human invasive breast ductal carcinomas, tumor-associated macrophages were immunostained with anti-CD68 antibody and counted or graded according to these histological locations. Microvessels were immunostained with anti-CD34 antibody and counted for microvessel density. We found that the presence of tumor stromal and tumor nest macrophages was closely correlated (p = 0.001). Both tumor stromal and tumor nest macrophages were associated with mitotic count (p = 0.001 and p = 0.037, respectively). However, only higher tumor stromal macrophage grades were associated with higher tumor grades (p = 0.004) and negative estrogen receptor status (p = 0.007). Multivariate analysis showed that tumors with a high mitotic count score (score 3 vs. scores 1 and 2) had a higher tumor stromal macrophage density (Grades III and IV) when adjusted for tumor size, tubule formation, and estrogen receptor status (odds ratio 3.41, p = 0.010). The tumor nest macrophage count significantly correlated with the microvessel density (p tumor stromal macrophages and tumor nest macrophages residing in different tumor microenvironments have distinctive roles.
    Matched MeSH terms: Tumor Microenvironment/immunology
  15. Casey SC, Vaccari M, Al-Mulla F, Al-Temaimi R, Amedei A, Barcellos-Hoff MH, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S160-83.
    PMID: 26106136 DOI: 10.1093/carcin/bgv035
    Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.
    Matched MeSH terms: Tumor Microenvironment/drug effects*
  16. Lee YT, Tan YJ, Oon CE
    Eur J Pharmacol, 2018 Sep 05;834:188-196.
    PMID: 30031797 DOI: 10.1016/j.ejphar.2018.07.034
    Molecular targeted therapies are revolutionized therapeutics which interfere with specific molecules to block cancer growth, progression, and metastasis. Many molecular targeted therapies approved by the Food and Drug Administration (FDA), have demonstrated remarkable clinical success in the treatment of a myriad of cancer types including breast, leukemia, colorectal, lung, and ovarian cancers. This review provides an update on the different types of molecular targeted therapies used in the treatment of cancer, focusing on the fundamentals of molecular targeted therapy, its mode of action in cancer treatment, as well as its advantages and limitations.
    Matched MeSH terms: Tumor Microenvironment/drug effects
  17. Melling GE, Flannery SE, Abidin SA, Clemmens H, Prajapati P, Hinsley EE, et al.
    Carcinogenesis, 2018 05 28;39(6):798-807.
    PMID: 29506142 DOI: 10.1093/carcin/bgy032
    The dissemination of cancer cells to local and distant sites depends on a complex and poorly understood interplay between malignant cells and the cellular and non-cellular components surrounding them, collectively termed the tumour microenvironment. One of the most abundant cell types of the tumour microenvironment is the fibroblast, which becomes corrupted by locally derived cues such as TGF-β1 and acquires an altered, heterogeneous phenotype (cancer-associated fibroblasts, CAF) supportive of tumour cell invasion and metastasis. Efforts to develop new treatments targeting the tumour mesenchyme are hampered by a poor understanding of the mechanisms underlying the development of CAF. Here, we examine the contribution of microRNA to the development of experimentally-derived CAF and correlate this with changes observed in CAF derived from tumours. Exposure of primary normal human fibroblasts to TGF-β1 resulted in the acquisition of a myofibroblastic CAF-like phenotype. This was associated with increased expression of miR-145, a miRNA predicted in silico to target multiple components of the TGF-β signalling pathway. miR-145 was also overexpressed in CAF derived from oral cancers. Overexpression of miR-145 blocked TGF-β1-induced myofibroblastic differentiation and reverted CAF towards a normal fibroblast phenotype. We conclude that miR-145 is a key regulator of the CAF phenotype, acting in a negative feedback loop to dampen acquisition of myofibroblastic traits, a key feature of CAF associated with poor disease outcome.
    Matched MeSH terms: Tumor Microenvironment/physiology
  18. Ayob AZ, Ramasamy TS
    J Biomed Sci, 2018 Mar 06;25(1):20.
    PMID: 29506506 DOI: 10.1186/s12929-018-0426-4
    BACKGROUND: Cancer stem cells (CSCs) are subpopulations of cancer cells sharing similar characteristics as normal stem or progenitor cells such as self-renewal ability and multi-lineage differentiation to drive tumour growth and heterogeneity. Throughout the cancer progression, CSC can further be induced from differentiated cancer cells via the adaptation and cross-talks with the tumour microenvironment as well as a response from therapeutic pressures, therefore contributes to their heterogeneous phenotypes. Challengingly, conventional cancer treatments target the bulk of the tumour and are unable to target CSCs due to their highly resistance nature, leading to metastasis and tumour recurrence.

    MAIN BODY: This review highlights the roles of CSCs in tumour initiation, progression and metastasis with a focus on the cellular and molecular regulators that influence their phenotypical changes and behaviours in the different stages of cancer progression. We delineate the cross-talks between CSCs with the tumour microenvironment that support their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation in response to therapeutic pressure. An insight into the distinct roles of CSCs in promoting angiogenesis and metastasis has been captured based on in vitro and in vivo evidences.

    CONCLUSION: Given dynamic cellular events along the cancer progression and contributions of resistance nature by CSCs, understanding their molecular and cellular regulatory mechanism in a heterogeneous nature, provides significant cornerstone for the development of CSC-specific therapeutics.

    Matched MeSH terms: Tumor Microenvironment/physiology*
  19. Goh YC, Chan SW, Siar CH
    Malays J Pathol, 2019 Dec;41(3):303-311.
    PMID: 31901915
    INTRODUCTION: Ameloblastoma is a benign but locally invasive odontogenic epithelial neoplasm with a high recurrence rate after treatment. The two main subsets encountered clinically are unicystic (UA) and solid/multicystic ameloblastoma (SMA). Currently neoplastic progression of many tumour types are believed to be related to parenchyma-stromal cell-cell interactions mediated by cytokines notably interleukins (IL). However their roles in ameloblastoma remain ill-understood.

    MATERIALS AND METHODS: Thirty-nine formalin-fixed paraffin-embedded ameloblastoma cases comprising unicystic ameloblastoma (n=19) and solid/multicystic ameloblastoma (n=20) were subjected to IHC staining for IL-1α, IL-1β, IL-6 and IL-8. A semi-quantitative method was used to evaluate the expression levels of these cytokines according to cell types in the tumoural parenchyma and stroma.

    RESULTS: Major findings were upregulations of IL-1α and IL-6 in SMA compared to UA. Both cytokines were heterogeneously detected in the tumoural parenchyma and stroma. Within the neoplastic epithelial compartment, IL-1α expression was more frequently detected in PA-like cells in UA whereas it was more frequently encountered in SR-like cells in SMA. IL-6 demonstrated higher expression levels in the stromal compartment of SMA. IL-1β and IL-8 were markedly underexpressed in both tumour subsets.

    CONCLUSIONS: Overexpression of IL-1α in SMA suggests that this growth factor might play a role in promoting bone resorption and local invasiveness in this subtype. The expression levels of IL-1α and IL-6 in three cellular localizations indicate that parenchymal-stromal components of ameloblastoma interact reciprocally via IL-1α and IL-6 to create a microenvironment conducive for tumour progression.

    Matched MeSH terms: Tumor Microenvironment/physiology
  20. Hafizz AMHA, Zin RRM, Aziz NHA, Kampan NC, Shafiee MN
    Mol Biol Rep, 2020 Oct;47(10):8199-8207.
    PMID: 32897522 DOI: 10.1007/s11033-020-05760-5
    As the obesity rates dramatically increased across the globe, the risk of endometrial cancer (EC) has substantially increased. Measures to improve the EC outcome is utmost important, especially data have shown that women at their reproductive age are commonly affected. No doubt, surgical intervention is a standard treatment for EC. However, the fact that this cancer could arise from metabolic diseases, additional therapy by lipid-lowering agent could be utilized to change the tumour environment. We review available evidence to support the use of this agent in the clinical setting. We search available evidence on the use of statin in EC, in various settings including cell lines, animal and human study. The possible actions at different molecular pathways leading to cellular changes and proliferation of cell were evaluated. The venture in drug repositioning of statins as a chemo-preventive potential agent in EC has gained attention in gynaecological oncology practice worldwide. Lipid-lowering effect by statins may exerted a chemoprotective effect in EC, but there is still lack of evidence on statins use to improve prognosis and survival in EC. Through the cholesterol-lowering effect of statins; theoretically, it could inhibit cell growth, proliferation, migration, and lead to apoptosis. Epidemiological studies suggested that statins may improve survival rate among EC patients. However, some evidence revealed the effects were only more prominent in type II EC. Notwithstanding that several studies also showed no benefit of statins in EC. Hence we highlight the limitations of these studies in this review. In line with recent literature on the topic, statins may play a role in EC management. Future studies for a proper systematic review and randomized controlled study are needed to answer some uncertainties of statins effect in EC.
    Matched MeSH terms: Tumor Microenvironment/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links