Displaying publications 1 - 20 of 104 in total

Abstract:
Sort:
  1. Yusof NS, Ashokkumar M
    Chemphyschem, 2015 Mar 16;16(4):775-81.
    PMID: 25598360 DOI: 10.1002/cphc.201402697
    The sonochemical synthesis of gold nanoparticles (GNPs) with different shapes and size distributions by using high-intensity focused ultrasound (HIFU) operating at 463 kHz is reported. GNP formation proceeds through the reduction of Au(3+) to Au(0) by radicals generated by acoustic cavitation. TEM images reveal that GNPs show irregular shapes at 30 W, are primarily icosahedral at 50 W and form a significant amount of nanorods at 70 W. The size of GNPs decreases with increasing acoustic power with a narrower size distribution. Sonochemiluminescence images help in the understanding of the effect of HIFU in controlling the size and shapes of GNPs. The number of radicals that form and the mechanical forces that are generated control the shape and size of the GNPs. UV/Vis spectra and TEM images are used to propose a possible mechanism for the observed effects. The results presented demonstrate, for the first time, that the HIFU system can be used to synthesise size- and shape-controlled metal nanoparticles.
    Matched MeSH terms: Ultrasonics*
  2. Sajjadi B, Abdul Aziz AR, Ibrahim S
    Ultrason Sonochem, 2015 Jan;22:463-73.
    PMID: 24981808 DOI: 10.1016/j.ultsonch.2014.06.004
    The influence of sonoluminescence transesterification on biodiesel physicochemical properties was investigated and the results were compared to those of traditional mechanical stirring. This study was conducted to identify the mechanistic features of ultrasonication by coupling statistical analysis of the experiments into the simulation of cavitation bubble. Different combinations of operational variables were employed for alkali-catalysis transesterification of palm oil. The experimental results showed that transesterification with ultrasound irradiation could change the biodiesel density by about 0.3kg/m(3); the viscosity by 0.12mm(2)/s; the pour point by about 1-2°C and the flash point by 5°C compared to the traditional method. Furthermore, 93.84% of yield with alcohol to oil molar ratio of 6:1 could be achieved through ultrasound assisted transesterification within only 20min. However, only 89.09% of reaction yield was obtained by traditional macro mixing/heating under the same condition. Based on the simulated oscillation velocity value, the cavitation phenomenon significantly contributed to generation of fine micro emulsion and was able to overcome mass transfer restriction. It was found that the sonoluminescence bubbles reached the temperature of 758-713K, pressure of 235.5-159.55bar, oscillation velocity of 3.5-6.5cm/s, and equilibrium radius of 17.9-13.7 times greater than its initial size under the ambient temperature of 50-64°C at the moment of collapse. This showed that the sonoluminescence bubbles were in the condition in which the decomposition phenomena were activated and the reaction rate was accelerated together with a change in the biodiesel properties.
    Matched MeSH terms: Ultrasonics*
  3. Ahmad KA, Rahman MFA, Zain KAM, Haron MN, Manaf AA
    Sensors (Basel), 2021 Aug 19;21(16).
    PMID: 34451023 DOI: 10.3390/s21165582
    In acoustic receiver design, the receiving sensitivity and bandwidth are two primary parameters that determine the performance of a device. The trade-off between sensitivity and bandwidth makes the design very challenging, meaning it needs to be fine-tuned to suit specific applications. The ability to design a PMUT with high receiving sensitivity and a wide bandwidth is crucial to allow a wide spectrum of transmitted frequencies to be efficiently received. This paper presents a novel structure involving a double flexural membrane with a fluidic backing layer based on an in-plane polarization mode to optimize both the receiving sensitivity and frequency bandwidth for medium-range underwater acoustic applications. In this structure, the membrane material and electrode configuration are optimized to produce good receiving sensitivity. Simultaneously, a fluidic backing layer is introduced into the double flexural membrane to increase the bandwidth. Several piezoelectric membrane materials and various electrode dimensions were simulated using finite element analysis (FEA) techniques to study the receiving performance of the proposed structure. The final structure was then fabricated based on the findings from the simulation work. The pulse-echo experimental method was used to characterize and verify the performance of the proposed device. The proposed structure was found to have an improved bandwidth of 56.6% with a receiving sensitivity of -1.8864 dB rel 1 V µPa. For the proposed device, the resonance frequency and center frequency were 600 and 662.5 kHz, respectively, indicating its suitability for the targeted frequency range.
    Matched MeSH terms: Ultrasonics*
  4. Hoo DY, Low ZL, Low DYS, Tang SY, Manickam S, Tan KW, et al.
    Ultrason Sonochem, 2022 Nov;90:106176.
    PMID: 36174272 DOI: 10.1016/j.ultsonch.2022.106176
    With rising consumer demand for natural products, a greener and cleaner technology, i.e., ultrasound-assisted extraction, has received immense attention given its effective and rapid isolation for nanocellulose compared to conventional methods. Nevertheless, the application of ultrasound on a commercial scale is limited due to the challenges associated with process optimization, high energy requirement, difficulty in equipment design and process scale-up, safety and regulatory issues. This review aims to narrow the research gap by placing the current research activities into perspectives and highlighting the diversified applications, significant roles, and potentials of ultrasound to ease future developments. In recent years, enhancements have been reported with ultrasound assistance, including a reduction in extraction duration, minimization of the reliance on harmful chemicals, and, most importantly, improved yield and properties of nanocellulose. An extensive review of the strengths and weaknesses of ultrasound-assisted treatments has also been considered. Essentially, the cavitation phenomena enhance the extraction efficiency through an increased mass transfer rate between the substrate and solvent due to the implosion of microbubbles. Optimization of process parameters such as ultrasonic intensity, duration, and frequency have indicated their significance for improved efficiency.
    Matched MeSH terms: Ultrasonics*
  5. Sergeev A, Shilkina N, Motyakin M, Barashkova I, Zaborova V, Kanina K, et al.
    Ultrason Sonochem, 2021 Oct;78:105751.
    PMID: 34534797 DOI: 10.1016/j.ultsonch.2021.105751
    Methods of NMR relaxation and differential scanning calorimetry (DSC) were used to study the crystallization of anhydrous milk fat (AMF) obtained from milk and subjected to ultrasonic (US) processing. Amongst the changes in the crystallization nature under the influence of ultrasound are the decrease in the crystallization temperature and the increase in the melting enthalpy of the anhydrous milk fat samples. The increase is ∼30% at 20 min of isothermal crystallization and is presumably explained by the additional formation of β'-form crystals from the melt. The parameters of the Avrami equation applied to the description of experimental data show an increase in the crystallization rate in samples with ultrasonic treatment and a change in the dimension of crystallization with a change in melting temperature.
    Matched MeSH terms: Ultrasonics*
  6. Chan CH, See TY, Yusoff R, Ngoh GC, Kow KW
    Food Chem, 2017 Apr 15;221:1382-1387.
    PMID: 27979103 DOI: 10.1016/j.foodchem.2016.11.016
    This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results.
    Matched MeSH terms: Ultrasonics/methods*
  7. Trinh H, Yusup S, Uemura Y
    Bioresour Technol, 2018 Jan;247:51-57.
    PMID: 28946094 DOI: 10.1016/j.biortech.2017.09.075
    Recently, rubber seed oil (RSO) has been considered as a promising potential oil source for biodiesel production. However, RSO is a non-edible feedstock with a significant high free fatty acid (FFA) content which has an adverse impact on the process of biodiesel production. In this study, ultrasonic-assisted esterification process was conducted as a pre-treatment step to reduce the high FFA content of RSO from 40.14% to 0.75%. Response surface methodology (RSM) using central composite design (CCD) was applied to the design of experiments (DOE) and the optimization of esterification process. The result showed that methanol to oil molar ratio was the most influential factor for FFA reduction whereas the effect of amount of catalyst and the reaction were both insignificant. The kinetic study revealed that the activation energy and the frequency factor of the process are 52.577kJ/mol and 3.53×108min-1, respectively.
    Matched MeSH terms: Ultrasonics*
  8. Eh AL, Teoh SG
    Ultrason Sonochem, 2012 Jan;19(1):151-9.
    PMID: 21715212 DOI: 10.1016/j.ultsonch.2011.05.019
    Lycopene extraction was carried out via the ultrasonic assisted extraction (UAE) with response surface methodology (RSM). Sonication enhanced the efficiency of relative lycopene yield (enhancement of 26% extraction yield of lycopene in 6 replications at 40.0 min, 40.0 °C and 70.0% v/w in the presence of ultrasound), lowered the extraction temperature and shortened the total extraction time. The extraction was applied with the addition of oxygen-free nitrogen flow and change of water route during water bath sonication. The highest relative yield of lycopene obtained was 100% at 45.0 °C with total extraction time of 50.0 min (30:10:10) and ratio of solvent to freeze-dried tomato sample (v/w) of 80.0:1. Optimisation of the lycopene extraction had been performed, giving the average relative lycopene yield of 99% at 45.6 min, 47.6 °C and ratio of solvent to freeze-dried tomato sample (v/w) of 74.4:1. From the optimised model, the average yield of all-trans lycopene obtained was 5.11±0.27 mg/g dry weight. The all-trans lycopene obtained from the high-performance liquid chromatography (HPLC) chromatograms was 96.81±0.81% with 3.19±0.81% of cis-lycopenes. The purity of total-lycopene obtained was 98.27±0.52% with β-carotene constituted 1.73±0.52% of the extract. The current improved, UAE of lycopene from tomatoes with the aid of RSM also enhanced the extraction yield of trans-lycopene by 75.93% compared to optimised conventional method of extraction. Hence, the current, improved UAE of lycopene promotes the extraction yield of lycopene and at the same time, minimises the degradation and isomerisation of lycopene.
    Matched MeSH terms: Ultrasonics/instrumentation; Ultrasonics/methods*
  9. Khan KM, Jamil W, Ambreen N, Taha M, Perveen S, Morales GA
    Ultrason Sonochem, 2014 May;21(3):1200-5.
    PMID: 24398059 DOI: 10.1016/j.ultsonch.2013.12.011
    Aldazines (Bis-Schiff bases) 1-24 were synthesized using aromatic aldehydes (heterocyclic and benzaldehydes) and hydrazine hydrate under reflux using conventional heating and/or via ultrasound irradiation using BiCl3 as catalyst. Ultrasonication conditions with cat. BiCl3 proved to be an effective, environmentally friendly synthetic procedure. This methodology is robust in the presence of electron donating and electron withdrawing groups affording desired products with high yields (>95%) in just a couple of minutes vs. hours using conventional heating.
    Matched MeSH terms: Ultrasonics*
  10. Tang SY, Sivakumar M, Nashiru B
    Colloids Surf B Biointerfaces, 2013 Feb 1;102:653-8.
    PMID: 23107943 DOI: 10.1016/j.colsurfb.2012.08.036
    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future.
    Matched MeSH terms: Ultrasonics*
  11. Joseph CG, Li Puma G, Bono A, Krishnaiah D
    Ultrason Sonochem, 2009 Jun;16(5):583-9.
    PMID: 19282232 DOI: 10.1016/j.ultsonch.2009.02.002
    Sonophotocatalysis involves the use of a combination of ultrasonic sound waves, ultraviolet radiation and a semiconductor photocatalyst to enhance a chemical reaction by the formation of free radicals in aqueous systems. Researchers have used sonophotocatalysis in a variety of investigations i.e. from water decontamination to direct pollutant degradation. This degradation process provides an excellent opportunity to reduce reaction time and the amount of reagents used without the need for extreme physical conditions. Given its advantages, the sonophotocatalysis process has a futuristic application from an engineering and fundamental aspect in commercial applications. A detailed search of published reports was done and analyzed in this paper with respect to sonication, photocatalysis and advanced oxidation processes.
    Matched MeSH terms: Ultrasonics*
  12. Kuan BB, Lim TK
    Med J Malaysia, 1984 Dec;39(4):280-4.
    PMID: 6544933
    Ultrasound measurement of ocular dimension is the chosen method for assessing axial length when determining dioptric power for intraocular lens. From the current results of 30 cases studied, the mean axial length ranges from 22 to 23 mm. Despite the limitation of the accuracy of the ultrasonic measurements with the 7.5 mHz transducer, the power of intraocular lens can. be determined satisfactorily in accordance with the knowledge of keratometric reading. Hence, high refractive errors could be avoided post-operatively.
    Matched MeSH terms: Ultrasonics*
  13. Meftah, H., Mohd Azimin, E.
    MyJurnal
    Foreign bodies in packaged foods may pose both a safety risk and a risk of perceived degradation of
    quality. When food products are manufactured or packaged, small foreign objects might end up in the product. It is naturally desirable for the food industry that all foreign bodies are detected and removed before they reach customers. In this study, the ultrasonic method was used to detect the foreign bodies in canned foods. In order to establish a technical concept for the detection of foreign bodies in canned foods, an experimental investigation was carried out using pulse-echo ultrasonic testing. A number of simulated foreign object pieces were deliberately put inside the canned food and the results were analyzed. The approach demonstrates that ultrasound has potential for application in many industrial food packaging environments where foreign objects need to be detected. Indeed, detection up to 4 millimeter foreign body size has been done for rock and metal foreign bodies.
    Matched MeSH terms: Ultrasonics
  14. Jemain, S.F.P., Jamal, P., Raus, A. R., Amid, A., Jaswir, I.
    MyJurnal
    Medicinal properties of Malaysian Curcuma caesia have not been studied extensively, even though it has been used as a traditional remedy. This study examined the effects of various extraction temperatures (30, 40, 50, 60, 70oC) using a high frequency (40 kHz) ultrasonic extraction method, time (30,60,90 and 120 minutes), pH (1,2,3,4,5,6,7,8,9,10) on the extraction yield of total phenolics and DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activities from C. caesia rhizome. Extraction was most efficient at pH 6.0, while the extraction time of 30 minutes and temperature of 60oC was the best in terms of total phenolics content and DPPH scavenging activity. This study is important due to its ability to improve extraction of total phenolics compound using ultrasonic extraction method while maintaining a relatively high DPPH scavenging activity of the extracts.
    Matched MeSH terms: Ultrasonics
  15. Noor Erna Fatini Mohd, Mariatti Jaafar, Tuti Katrina Abdullah
    MyJurnal
    Carbon fiber reinforced epoxy (CFRE) is commonly been used in automotive and aviation industries. However, CFRE composite exhibits the problem of adherence between fiber and matrix. The interface between carbon fiber (CF) and epoxy becomes a weak zone and leads to the debonding defect of fiber and low mechanical properties of composites. The main focus of this study is to fabricate CFRE using carbon nanotubes (CNTs), as the hybrid reinforcement with CF. Ultrasonic method is used to disperse CNTs in distilled water for 20 minutes, followed by deposition of CNTs on CF using electrophoretic deposition (EPD) technique. Hand lay-up assisted vacuum bagging is employed to fabricate CNTs/CF/Epoxy composite. From morphologies, surface topography and peel off testing, it can be confirmed that 30 minutes deposition allowed more CNTs to deposit on CF. The flexural properties shows that 30 minutes deposition inherited high flexural strength, 67.4 MPa and modulus, 8490 MPa.
    Matched MeSH terms: Ultrasonics
  16. Abdul Ghani Rafek, Azimah Hussin, Lee KE, Ailie Sofyiana Serasa, Goh TL
    Sains Malaysiana, 2016;45:185-193.
    The uniaxial compressive strength (UCS) is one of the most common mechanical parameters required in geotechnical engineering to characterize the compressive strength of rock material. Measurements of UCS are expensive, time consuming, destructive and thus, not favorable in the presence of limited samples. Therefore, a simple yet practical application is needed for the estimation of UCS. This research presents two correlations to predict UCS values for granite and schist by using ultrasonic velocity travel time (tp) from ultrasonic tests. The validity of the practical approach presented in this research is confirmed based on the strong correlations developed from the experimental tests conducted. For the entire data set, the correlation between UCS and ultrasonic velocity travel time was expressed as UCS = 217.2 e-0.016(tp) for granite and UCS = 1110.6 e-0.037(tp) for schist and the coefficient of determination (R2) value for both granite and schist is 0.93. These correlations may be useful for applications related to geotechnical engineering designs.
    Matched MeSH terms: Ultrasonics
  17. Khaidzir S, Masri AN, Ruslan MSH, Abdul Mutalib MI
    ACS Omega, 2021 Apr 13;6(14):9629-9637.
    PMID: 33869943 DOI: 10.1021/acsomega.1c00189
    In this study, piperidinium-based ionic liquids (IL) containing trifluoromethanesulfonate, phenolate, and dicyanamide anions were synthesized. Using the ILs, extraction of naphthenic acid from highly acidic oil with a total acid number (TAN) of 1.44 was studied. Two agitation techniques have been implemented for the extraction process, which were mechanical stirring and ultrasonic-assisted irradiation. 1-Butyl-1-methylpiperidinium phenolate [BMPi][Phe] showed the best potential in extracting naphthenic acid from oil, with complete removal of naphthenic acid with IL-to-oil ratios of 0.010 and 0.0025 for the mechanical stirring method and the ultrasonic-assisted method, respectively. Ultrasonic-assisted extraction process shows very good potential in enhancing the extraction efficiency of naphthenic acid. Optimization and study on the effects of ultrasonic parameters, namely, IL-to-oil ratio, ultrasonic amplitude, and time, were studied through response surface methodology (RSM). Using [BMPi][Phe], the optimum conditions obtained are IL-to-oil ratio of 0.03, 53.91% of amplitude, and 4.29 min of extraction time. Under these optimum conditions, 100% removal of naphthenic acid was achieved.
    Matched MeSH terms: Ultrasonics
  18. Goh T, Abdul Rahim Samsudin, Abdul Ghani Rafek
    A geotechnical study needs to be carried out to determine the engineering parameters of the rock mass at the project site in executing construction projects such as tunnels, dams, highways and buildings. Design and safety factor of the construction are highly dependent on soil and rock engineering parameters which are usually determined by in-situ test such as Standard Penetration Test (SPT) and seismic tests. The SPT test which normally involves drilling and laboratory works always incur high operating cost, while seismic tests on the other hand are fast, cheap, non-destructive and an easy to operate method for rock mass characterization. The spectral analysis of surface waves (SASW) method is an in situ and non-destructive measurement that is rapid and cost effective. The aims of this study were to determine Rock Quality Designation (RQD) value, excavation classification analysis as well as site characterization by using the SASW method. WinSASW 3.1.3 was used for inversion processing of the SASW data to produce shear wave velocity (Vs) versus depth profiles. The profiles were then analyzed and correlated with rock mass engineering geological parameters such as RQD and site characterization as well as excavation classification of rock mass. Twenty (20) SASW tests were conducted on the granitic rock mass and four (4) SASW tests were conducted on a cut hill slope of metasedimentary rocks. RQD values were computed based on shear wave velocities and ultrasonic velocities of intact (fresh) rock. The differences between RQD obtained from SASW method and those from discontinuity survey were found to be less than 10%. Excavation classification for granitic rock mass at JKR Quarry was empirically determined using both SASW and ultrasonic velocities as well as RQD value of the rock mass. Site characterization for metasedimentary rocks mass at Bukit Tampoi was determined based on shear wave velocities from SASW method.
    Matched MeSH terms: Ultrasonics
  19. Suping Peng, Wenfeng Du, Xiaoming Tang, Zeng Hu, Yunlan He
    Sains Malaysiana, 2017;46:2187-2193.
    In order to understand the characteristics of acoustic wave propagation in rocks within seismic frequency band (<100
    Hz), the velocities of longitudinal and transverse waves of four different types of rocks were tested using low-frequency
    stress-strain method by means of the physical testing system of rock at low frequency and the experimental data of acoustic
    velocities of four different types of rocks at this frequency band were obtained. The experimental results showed that the
    acoustic velocities of four different types of rocks increased with the increase of temperature and pressure within the
    temperature and pressure ranges set by the experiment. The acoustic velocity of fine sandstone at 50% water saturation
    was smaller than that of dry sample. The acoustic velocities of four different types of rocks were different and the velocities
    of longitudinal waves of gritstone, fine sandstone, argillaceous siltstone and mudstone increased in turn under similar
    conditions and were smaller than those at ultrasonic frequency. Few of existing studies focus on the acoustic velocity at
    seismic frequency band, thus, further understanding of the acoustic characteristics at this seismic frequency band still
    requires more experimental data.
    Matched MeSH terms: Ultrasonics
  20. Mat-Shayuti MS, Tuan Ya TMYS, Abdullah MZ, Othman NH, Alias NH
    Environ Sci Pollut Res Int, 2021 Nov;28(41):58081-58091.
    PMID: 34106401 DOI: 10.1007/s11356-021-14776-8
    Despite the potential shown by previous investigations on the use of ultrasound for the remediation of oil-contaminated sand, the influence and interactions among ultrasonic parameters and oily sand are unclear, leading to possible ineffective treatment and high-power consumption. In order to improve the process efficiency, this work analyzes the effects of ultrasonic power, frequency, and load toward the cleaning of crude oil-contaminated sand, using two different sample positions and sand types. Crude oil-contaminated beach sand and produced sand from offshore oil well were used as samples. They were cleaned in custom-made ultrasonic bath reactor for 10 min with power from 30 to 120 W, frequency covering 25-60 kHz, and sand load of 10-100 g. With experimental design consisting multiple factors and levels, the interactions between factors in all possible combinations were determined using ANOVA (n = 210). From p-value based at 95% confidence interval and extensive F test, the three most significant factors were the sand type, the ultrasonic frequency, and the interaction between sand type and frequency. The best setting for suspended samples involved high frequency of 60 kHz, whereas bottom samples preferred low frequency at 28 kHz. This finding was justified when the acoustic pressure attenuation, standing wave pattern, and surface pitting/cracking were found in correlation with the cleaning results. Overall, the maximum treatment under ultrasonic bath solely gained around 60%, improvable by hybrid cleaning with other techniques such as chemical, biological, mechanical, and thermal.
    Matched MeSH terms: Ultrasonics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links