Displaying all 4 publications

Abstract:
Sort:
  1. Sein KT, Arumainayagam G
    Clin Chem, 1987 Dec;33(12):2303-4.
    PMID: 3690853
    Matched MeSH terms: Urea/analysis*
  2. Abd Rahim MA, Johani FH, Shah SA, Hassan MR, Abdul Manaf MR
    Ann Glob Health, 2019 Jul 24;85(1).
    PMID: 31348624
    BACKGROUND: Helicobacter pylori (H. pylori) infection is known to be associated with peptic ulcer and gastric cancer. Detection of H. pylori infection is a significant part of peptic ulcer and gastric cancer prevention and management. 13C-urea breath test (UBT) provides a good option for the pathogen detection due to its accuracy and safety.

    OBJECTIVE: This review aims to evaluate the 13C-UBT diagnostic accuracy studies conducted among Asian population and validate its use for the Asian population.

    METHODS: Original articles were systematically searched in PubMed, Scopus, and Google Scholar using the PICOS strategy by applying relevant keywords. Only studies published in English and conducted in Asia were included. Our search returned 276 articles. After assessment, 11 articles which answered our research question and met the criteria set for systematic review and meta-analysis were accepted. A total of 15 study protocols were extracted from the 11 accepted articles.

    FINDINGS: Majority of the studies were conducted in Hong Kong (six), followed by Taiwan (five), Japan (two), and one each in Singapore and Israel. All studies had used histology as part of its gold standard of reference. All but one study was performed on adult populations. The summary estimate for sensitivity was 97% (95% CI: 96, 98%), and specificity was 96% (95% CI: 95, 97%), with significant heterogeneity between studies. Adjusting for the dose (50 mg) and breath sample collection time (20 minutes) had improved both accuracy estimates and significantly reduced heterogeneity.

    CONCLUSION: This review supports the test-and-treat strategy for H. pylori infection management. Prevalence and cost-effectiveness studies are mandatory for health authorities to adopt this strategy into national policy.

    Matched MeSH terms: Urea/analysis*
  3. Abg Ahmad DFB, Wasli ME, Tan CSY, Musa Z, Chin SF
    Sci Rep, 2023 Nov 22;13(1):20453.
    PMID: 37993538 DOI: 10.1038/s41598-023-47922-y
    The effect of urea-loaded cellulose hydrogel, a controlled-release fertilizer (CRF) on growth and yield of upland rice were investigated in upland rice. As with the initial research, nitrogen (N) treatments were applied as CRF treatments; T2H (30 kg N ha-1), T3H (60 kg N ha-1), T4H (90 kg N ha-1), T5H (120 kg N ha-1) and recommended dose of fertilizer (RDF) at 120 kg N ha-1 RDF (T6U) in split application and T1 (0 N) as control. Results from this study indicated that applying CRF at the optimum N rate, T4H resulted in maximum grain yield, increasing by 71%. The analysis of yield components revealed that higher grain yield in T4H CRF was associated with an increase in panicle number and number of grains per panicle. Maximum grain N uptake of 0.25 g kg-1 was also observed in T4H CRF. In addition, T4H CRF recorded the highest harvest index (HI) and N harvest index (NHI) of 45.5% and 67.9%, respectively. Application of T4H CRF also recorded the highest N use efficiency (NUE) and N agronomic efficiency (NAE), 52.6% and 12.8 kg kg-1, respectively. Observations show that CRF with only 75% N applied (T4H) in soil improved grain yield when compared to CRF with 100% N and 100% RDF in farmers' conventional split application. This suggested that CRF with a moderate N application might produce the highest potential yield and improved N efficiencies while enhancing crop production and further increase in N supply did not increase yield and N efficiencies. The results suggest that the application of T4H CRF for upland rice would enhance HI, N efficiencies and improve the yield of upland rice. Also, all growth parameters and yield were positively influenced by the application of CRF as a basal dose compared to split application of conventional urea fertilizers.
    Matched MeSH terms: Urea/analysis
  4. Menon PS, Said FA, Mei GS, Berhanuddin DD, Umar AA, Shaari S, et al.
    PLoS One, 2018;13(7):e0201228.
    PMID: 30052647 DOI: 10.1371/journal.pone.0201228
    This work investigates the surface plasmon resonance (SPR) response of 50-nm thick nano-laminated gold film using Kretschmann-based biosensing for detection of urea and creatinine in solution of various concentrations (non-enzymatic samples). Comparison was made with the presence of urease and creatininase enzymes in the urea and creatinine solutions (enzymatic samples), respectively. Angular interrogation technique was applied using optical wavelengths of 670 nm and 785 nm. The biosensor detects the presence of urea and creatinine at concentrations ranging from 50-800 mM for urea samples and 10-200 mM for creatinine samples. The purpose of studying the enzymatic sample was mainly to enhance the sensitivity of the sensor towards urea and creatinine in the samples. Upon exposure to 670 nm optical wavelength, the sensitivity of 1.4°/M was detected in non-enzymatic urea samples and 4°/M in non-enzymatic creatinine samples. On the other hand, sensor sensitivity as high as 16.2°/M in urea-urease samples and 10°/M in creatinine-creatininase samples was detected. The enhanced sensitivity possibly attributed to the increase in refractive index of analyte sensing layer due to urea-urease and creatinine-creatininase coupling activity. This work has successfully proved the design and demonstrated a proof-of-concept experiment using a low-cost and easy fabrication of Kretschmann based nano-laminated gold film SPR biosensor for detection of urea and creatinine using urease and creatininase enzymes.
    Matched MeSH terms: Urea/analysis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links