Displaying all 13 publications

Abstract:
Sort:
  1. Sun W, McCrory TS, Khaw WY, Petzing S, Myers T, Schmitt AP
    J Virol, 2014 Nov;88(22):13099-110.
    PMID: 25210190 DOI: 10.1128/JVI.02103-14
    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections.
    Matched MeSH terms: Viral Matrix Proteins/metabolism*
  2. Molouki A, Hsu YT, Jahanshiri F, Abdullah S, Rosli R, Yusoff K
    Virol J, 2011;8:385.
    PMID: 21810274 DOI: 10.1186/1743-422X-8-385
    The underlying mechanisms by which Newcastle disease virus (NDV) kills cancer cells are still unclear. Recent discoveries have shown that many viruses contain Bcl-2 homology-like domains which enabled their interaction with Bcl-2 family members, and thereby accounting for their virulence and pathogenicity. Alignment of the protein sequences of Malaysian strain of NDV, known as AF2240, with those from members of the human Bcl-2 family showed many similar regions; most notably we found that its matrix (AF2240-M) protein, large (AF2240-L) protein and fusion (AF2240-F) protein all contain BH3-like regions. In addition, there are BH1-like domains in these proteins, where AF2240-F and Mcl-1 share 55% identity within this region. To further investigate our hypothesis that the presence of the BH3-like domains in these proteins may convey cytotoxicity, AF2240-M and AF2240-F genes were cloned into pFLAG and pEGFP.N2 vectors and transfected into HeLa cells. The expression of these constructs promoted cell death. As shown by flow cytometry, AF2240-M protein with deleted BH3-like region showed five-fold decrease in apoptosis. Moreover, the construct containing the N-terminal of AF2240-M showed nearly the same cell death rate as to that of the full-length protein, strongly suggesting that the BH3-like domain within this protein participates in promoting cell death. Moreover, AF2240-M transfection promoted Bax redistribution to mitochondria. Therefore, to determine whether there is any direct interaction between NDV viral proteins with some members of the Bcl-2 family, various constructs were co-transfected into HeLa cells. Co-immunoprecipitation trials showed that the AF2240-M indeed directly interacted with Bax protein via its BH3-domain, as the mutant proteins failed to interact with Bax. AF2240-F failed to interact with any of the tested proteins, although Bcl-XL slowed down the rate of cell death caused by this construct by nearly five-fold. In a parallel experiment, the level of expression of endogenous Bax and Bcl-2 after infection of HeLa cells with NDV was assessed by qRT-PCR, but no statistically significant change was observed. Consequently, the Bax/Bcl-2 ratio at the mRNA level did not alter. Overall, our study has shed additional light into the mechanisms by which NDV induces apoptosis.
    Matched MeSH terms: Viral Matrix Proteins/metabolism*
  3. Joseph NM, Ho KL, Tey BT, Tan CS, Shafee N, Tan WS
    Biotechnol Prog, 2016 Jul 08;32(4):1038-45.
    PMID: 27088434 DOI: 10.1002/btpr.2279
    The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus-like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti-myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high-performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038-1045, 2016.
    Matched MeSH terms: Viral Matrix Proteins/metabolism
  4. Yap LF, Ahmad M, Zabidi MM, Chu TL, Chai SJ, Lee HM, et al.
    Int J Oncol, 2014 May;44(5):1774-80.
    PMID: 24626628 DOI: 10.3892/ijo.2014.2342
    The molecular events that drive the progression of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) are still to be elucidated. Here, we report for the first time the pathogenic significance of an NPC-associated gene, wingless-type MMTV integration site family, member 5A (WNT5A) and the contribution of EBV to its expression. WNT5A is a representative Wnt protein that activates non-canonical Wnt signalling. With regard to its role in carcinogenesis, there is conflicting evidence as to whether WNT5A has a tumour-promoting or tumour-suppressive role. We show that WNT5A is upregulated in primary NPC tissue samples. We also demonstrate that WNT5A expression was dramatically increased in NPC cell lines expressing the EBV-encoded LMP2A gene, suggesting that this EBV-encoded latent gene is responsible for upregulating WNT5A in NPC. In addition, in vitro WNT5A overexpression promotes the proliferation, migration and invasion of NPC cells. Our results not only reveal pro-tumorigenic effects of WNT5A in NPC but also suggest that WNT5A could be an important therapeutic target in patients with EBV-associated disease.
    Matched MeSH terms: Viral Matrix Proteins/metabolism*
  5. Bhowmick S, Chakravarty C, Sellathamby S, Lal SK
    Arch Virol, 2017 Apr;162(4):919-929.
    PMID: 27942972 DOI: 10.1007/s00705-016-3153-8
    The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.
    Matched MeSH terms: Viral Matrix Proteins/metabolism*
  6. Dietzel E, Kolesnikova L, Sawatsky B, Heiner A, Weis M, Kobinger GP, et al.
    J Virol, 2016 Mar;90(5):2514-22.
    PMID: 26676785 DOI: 10.1128/JVI.02920-15
    Nipah virus (NiV) causes fatal encephalitic infections in humans. To characterize the role of the matrix (M) protein in the viral life cycle, we generated a reverse genetics system based on NiV strain Malaysia. Using an enhanced green fluorescent protein (eGFP)-expressing M protein-deleted NiV, we observed a slightly increased cell-cell fusion, slow replication kinetics, and significantly reduced peak titers compared to the parental virus. While increased amounts of viral proteins were found in the supernatant of cells infected with M-deleted NiV, the infectivity-to-particle ratio was more than 100-fold reduced, and the particles were less thermostable and of more irregular morphology. Taken together, our data demonstrate that the M protein is not absolutely required for the production of cell-free NiV but is necessary for proper assembly and release of stable infectious NiV particles.
    Matched MeSH terms: Viral Matrix Proteins/metabolism*
  7. Yee PH, Sim SP
    J Biomed Sci, 2010;17:77.
    PMID: 20858288 DOI: 10.1186/1423-0127-17-77
    Nasopharyngeal carcinoma (NPC) is commonly found in Southern China and South East Asia. Epstein-Barr virus (EBV) infection is well associated with NPC and has been implicated in its pathogenesis. Moreover, various chromosome rearrangements were reported in NPC. However, the underlying mechanism of chromosome rearrangement remains unclear. Furthermore, the relationship between EBV and chromosome rearrangement with respect to the pathogenesis of NPC has not been established. We hypothesize that during virus- or stress-induced apoptosis, chromosomes are initially cleaved at the base of the chromatin loop domain structure. Upon DNA repair, cell may survive with rearranged chromosomes.
    Matched MeSH terms: Viral Matrix Proteins/metabolism*
  8. Karim N, Pallesen G
    Malays J Pathol, 2003 Jun;25(1):45-7.
    PMID: 16196377
    Epstein-Barr virus (EBV) has consistently been detected in the tumour cells of nasopharyngeal carcinoma and lymphoepithelial-like carcinoma of the salivary glands, and have occasionally been found in similar tumours at other sites. Moreover, recent studies from various parts of the world including the Orient have shown about 10% of gastric carcinomas to be EBV-associated. We studied 50 gastric carcinomas from Malaysia to investigate its association with EBV in the Malaysian population. They comprised 37 intestinal and 13 diffuse type carcinomas from 32 male and 18 female patients, age range from 29 to 86 years with an ethnic distribution of Malay: Chinese: Indian with the ratio of 4: 27: 19. EBV gene and gene-expression were examined in sections of formalin-fixed, paraffin-embedded tissue using commercially available probes for detecting EBV encoded RNAs (EBERs) by in situ hybridization and monoclonal antibodies to EBV latent membrane protein-1 (LMP-1) by standard immunohistochemistry. Five of 50 gastric carcinomas showed EBER intranuclear positivity in all tumour cells but no cases expressed LMP-1. The EBV-associated cases were classified as intestinal type in 4 and diffuse type in one case and all were histologically unremarkable. EBV-positive tumours were found in 3 Chinese and 2 Indian patients with none in the small Malay group. Four EBV-positive tumours were in male patients, with age-range of 65 to 86 years. We conclude that our findings of about 10% of Malaysian gastric carcinomas being EBV-associated is in line with the results from other parts of the world and from other ethnic groups.
    Matched MeSH terms: Viral Matrix Proteins/metabolism
  9. Chew MM, Gan SY, Khoo AS, Tan EL
    BMC Cancer, 2010;10:574.
    PMID: 20964870 DOI: 10.1186/1471-2407-10-574
    Nasopharyngeal carcinoma (NPC) is a type of neoplasm that is highly prevalent in East Asia and Africa with Epstein-Barr virus (EBV), genetic, and dietary factors implicated as possible aetiologic factors. Previous studies suggested the association of certain cytokines with the invasion and metastatic properties of NPC. The present study examined the roles of EBV latent membrane protein-1 (LMP1), interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-beta 1 (TGF-β1) and laminin in the regulation of matrix-metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) in NPC. The effects of these factors on bmi-1, an oncogene, and ngx6, a tumour suppressor gene, were also investigated.
    Matched MeSH terms: Viral Matrix Proteins/metabolism*
  10. Tan EL, Peh SC, Sam CK
    J Med Virol, 2003 Feb;69(2):251-7.
    PMID: 12683415
    Nasopharyngeal carcinoma, a malignancy associated closely with Epstein-Barr virus (EBV), is prevalent among Chinese of Southern China origin. Epidemiological studies indicate a high prevalence of EBV in Asia with viral isolates having typical characteristics of the putative viral oncogene, latent membrane protein 1 (LMP-1), such as the loss of the Xho1 restriction site in Exon 1 and the 30-bp deletion in Exon 3. The EBV LMP-1 gene from throat washings of 120 nasopharyngeal carcinoma patients and 14 healthy individuals were analyzed. Similar analyses were also carried out on 30 and 12 postnasal space biopsies from nasopharyngeal carcinoma patients and healthy individuals, respectively. The 30-bp deletion was detected in 20% of nasopharyngeal carcinoma throat washes and in 100% of nasopharyngeal carcinoma postnasal space biopsies. Interestingly, 16% of the nasopharyngeal carcinoma biopsies possessed both the deleted and the undeleted variants, suggestive of dual infections. The notion of dual infections in nasopharyngeal carcinoma was further supported by the coexistence of both "F" and "f" (BamH1F region) EBV variants in 11% of the nasopharyngeal carcinoma biopsies. All of the throat washes and biopsies from the healthy controls showed the undeleted variant. The loss of the Xho1 restriction site was found with higher frequency both in throat washes and biopsies from patients with nasopharyngeal carcinoma. The discrepancy in the frequency of the 30-bp deletion between throat washes (20%) and postnasal space biopsies (100%) was an indication that this deletion is specific for viral isolates from primary tumour sites.
    Matched MeSH terms: Viral Matrix Proteins/metabolism
  11. Kim LH, Peh SC, Poppema S
    Int J Cancer, 2003 Nov 1;107(2):250-5.
    PMID: 12949802
    Isolation of single cells permits analysis of DNA or RNA from individual cells among heterogeneous populations. This technique is particularly useful in the study of classical Hodgkin's lymphoma (cHL) due to the scarcity of H/RS tumor cells among large numbers of reactive leukocytes. In a previous study, we found a high frequency of dual LMP-1 variant (concurrent presence of deleted and nondeleted variants) in cHL from whole-tissue sections. For the present study, we applied a single-cell isolation technique to determine the LMP-1 oncogene variant in EBV-associated H/RS cells. Five cases of EBV-infected cHL, containing nondeleted (n=1), deleted (n=1) and dual infection (n=3) based on whole-tissue section analysis, were selected for study. Paraffin-embedded tissue sections were stained with antibody to LMP-1 and positively stained H/RS cells isolated using a semiautomated micromanipulator. Each isolated single cell was subjected to PCR for amplification of the LMP-1 gene flanking the 30 bp deletion region and Xho1 restriction site. Cases with either nondeleted variant or the deleted variant showed similar LMP-1 variant expression in isolated single H/RS cells. However, 1 of the 3 cases with dual variants showed only the deleted variant in H/RS cells. The other 2 cases showed mixed patterns of deleted, nondeleted and dual LMP-1 variants in isolated single H/RS cells. All cases showed loss of the Xho1 restriction site, with the exception of the case with nondeleted LMP-1. Results of single-H/RS cell analysis of the Xho1 restriction site concur with those of whole-tissue section amplification. A mixed pattern of LMP-1 variants was observed in isolated H/RS cells, and it is speculated that this is due to the accumulation of mutation and deletion events.
    Matched MeSH terms: Viral Matrix Proteins/metabolism
  12. Vockerodt M, Vrzalikova K, Ibrahim M, Nagy E, Margielewska S, Hollows R, et al.
    J Pathol, 2019 06;248(2):142-154.
    PMID: 30666658 DOI: 10.1002/path.5237
    The Epstein-Barr virus (EBV) is found almost exclusively in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), yet its contribution to this tumour remains poorly understood. We have focused on the EBV-encoded latent membrane protein-1 (LMP1), a constitutively activated CD40 homologue expressed in almost all EBV-positive DLBCLs and which can disrupt germinal centre (GC) formation and drive lymphomagenesis in mice. Comparison of the transcriptional changes that follow LMP1 expression with those that follow transient CD40 signalling in human GC B cells enabled us to define pathogenic targets of LMP1 aberrantly expressed in ABC-DLBCL. These included the down-regulation of S1PR2, a sphingosine-1-phosphate (S1P) receptor that is transcriptionally down-regulated in ABC-DLBCL, and when genetically ablated leads to DLBCL in mice. Consistent with this, we found that LMP1-expressing primary ABC-DLBCLs were significantly more likely to lack S1PR2 expression than were LMP1-negative tumours. Furthermore, we showed that the down-regulation of S1PR2 by LMP1 drives a signalling loop leading to constitutive activation of the phosphatidylinositol-3-kinase (PI3-K) pathway. Finally, core LMP1-PI3-K targets were enriched for lymphoma-related transcription factors and genes associated with shorter overall survival in patients with ABC-DLBCL. Our data identify a novel function for LMP1 in aggressive DLBCL. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Matched MeSH terms: Viral Matrix Proteins/metabolism*
  13. Daker M, Bhuvanendran S, Ahmad M, Takada K, Khoo AS
    Mol Med Rep, 2013 Mar;7(3):731-41.
    PMID: 23292678 DOI: 10.3892/mmr.2012.1253
    Nasopharyngeal carcinoma (NPC) is a unique tumour of epithelial origin with a distinct geographical distribution, closely associated with the Epstein‑Barr virus (EBV). EBV‑encoded RNAs (EBERs) are small non‑polyadenylated RNAs that are abundantly expressed in latent EBV‑infected NPC cells. To study the role of EBERs in NPC, we established stable expression of EBERs in HK1, an EBV‑negative NPC cell line. Cells expressing EBERs consistently exhibited an increased growth rate. However, EBERs did not confer resistance towards cisplatin‑induced apoptosis or promote migration or invasion ability in the cells tested. Using microarray gene expression profiling, we identified potential candidate genes that were deregulated in NPC cells expressing EBERs. Gene Ontology analysis of the data set revealed that EBERs upregulate the cellular lipid metabolic process. Upregulation of low‑density lipoprotein receptor (LDLR) and fatty acid synthase (FASN) was observed in EBER‑expressing cells. NPC cells exhibited LDL‑dependent cell proliferation. In addition, a polyphenolic flavonoid compound, quercetin, known to inhibit FASN, was found to inhibit proliferation of NPC cells.
    Matched MeSH terms: Viral Matrix Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links