Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Mehdizadeh S, Glazier PS
    J Biomech, 2018 05 17;73:243-248.
    PMID: 29628131 DOI: 10.1016/j.jbiomech.2018.03.032
    The aims of this study were to demonstrate "order error" in the calculation of continuous relative phase (CRP) and to suggest two alternative methods-(i) constructing phase-plane portraits by plotting position over velocity; and (ii), the Hilbert transform-to rectify it. Order error is the change of CRP order between two degrees of freedom (e.g., body segments) when using the conventional method of constructing phase-plane portraits (i.e., velocity over position). Both sinusoidal and non-sinusoidal simulated signals as well as signals from human movement kinematics were used to investigate order error and the performance of the two alternative methods. Both methods have been shown to lead to correct results for simulated sinusoidal and non-sinusoidal signals. For human movement data, however, the Hilbert transform is superior for calculating CRP.
    Matched MeSH terms: Walking/physiology*
  2. Mehdizadeh S, Sanjari MA
    J Biomech, 2017 11 07;64:236-239.
    PMID: 28958634 DOI: 10.1016/j.jbiomech.2017.09.009
    This study aimed to determine the effect of added noise, filtering and time series length on the largest Lyapunov exponent (LyE) value calculated for time series obtained from a passive dynamic walker. The simplest passive dynamic walker model comprising of two massless legs connected by a frictionless hinge joint at the hip was adopted to generate walking time series. The generated time series was used to construct a state space with the embedding dimension of 3 and time delay of 100 samples. The LyE was calculated as the exponential rate of divergence of neighboring trajectories of the state space using Rosenstein's algorithm. To determine the effect of noise on LyE values, seven levels of Gaussian white noise (SNR=55-25dB with 5dB steps) were added to the time series. In addition, the filtering was performed using a range of cutoff frequencies from 3Hz to 19Hz with 2Hz steps. The LyE was calculated for both noise-free and noisy time series with different lengths of 6, 50, 100 and 150 strides. Results demonstrated a high percent error in the presence of noise for LyE. Therefore, these observations suggest that Rosenstein's algorithm might not perform well in the presence of added experimental noise. Furthermore, findings indicated that at least 50 walking strides are required to calculate LyE to account for the effect of noise. Finally, observations support that a conservative filtering of the time series with a high cutoff frequency might be more appropriate prior to calculating LyE.
    Matched MeSH terms: Walking/physiology*
  3. Abdul Yamin NAA, Basaruddin KS, Abu Bakar S, Salleh AF, Mat Som MH, Yazid H, et al.
    J Healthc Eng, 2022;2022:7716821.
    PMID: 36275397 DOI: 10.1155/2022/7716821
    This study aims to investigate the gait stability response during incline and decline walking for various surface inclination angles in terms of the required coefficient of friction (RCOF), postural stability index (PSI), and center of pressure (COP)-center of mass (COM) distance. A customized platform with different surface inclinations (0°, 5°, 7.5°, and 10°) was designed. Twenty-three male volunteers participated by walking on an inclined platform for each inclination. The process was then repeated for declined platform as well. Qualysis motion capture system was used to capture and collect the trajectories motion of ten reflective markers that attached to the subjects before being exported to a visual three-dimensional (3D) software and executed in Matlab to obtain the RCOF, PSI, as well as dynamic PSI (DPSI) and COP-COM distance parameters. According to the result for incline walking, during initial contact, the RCOF was not affected to inclination. However, it was affected during peak ground reaction force (GRF) starting at 7.5° towards 10° for both walking conditions. The most affected PSI was found at anterior-posterior PSI (APSI) even as low as 5° inclination during both incline and decline walking. On the other hand, DPSI was not affected during both walking conditions. Furthermore, COP-COM distance was most affected during decline walking in anterior-posterior direction. The findings of this research indicate that in order to decrease the risk of falling and manage the inclination demand, a suitable walking strategy and improved safety measures should be applied during slope walking, particularly for decline and anterior-posterior orientations. This study also provides additional understanding on the best incline walking technique for secure and practical incline locomotion.
    Matched MeSH terms: Walking/physiology
  4. Gholizadeh H, Abu Osman NA, Eshraghi A, Arifin N, Chung TY
    Prosthet Orthot Int, 2016 Aug;40(4):509-16.
    PMID: 25583929 DOI: 10.1177/0309364614564022
    BACKGROUND: This article describes a total surface bearing prosthetic socket for a patient (25-year-old female) with a bulbous stump.

    CASE DESCRIPTION AND METHODS: The subject had unstable excessive soft tissue at the distal end of the residuum. After 2 years of prosthetic use, she experienced several problems, including pain in the residual limb and knee joint. Pressure distribution was evaluated during ambulation. We also designed a total surface bearing socket with Velcro as suspension system to distribute the load evenly on the residual limb, and to facilitate donning procedure.

    FINDINGS AND OUTCOMES: The main site of weight bearing in the old prosthesis (patellar tendon bearing) was anterior proximal region of the residual limb, especially the patellar tendon. The pressure was almost 10 times higher than the distal region during level walking. Pressures were distributed more evenly with the total surface bearing socket design, and the donning was much easier.

    CONCLUSION: Pressure distribution within the socket could be affected by socket design and suspension system. Using the total surface bearing socket and Velcro as suspension system might facilitate donning of prosthesis and reduce traction at the end of residual limb during the swing phase of gait.

    CLINICAL RELEVANCE: Proper socket design and suspension system based on the amputees' need can facilitate rehabilitation process and lead to the amputee's satisfaction. The pressure is distributed more uniformly over the residual limb by the total surface bearing socket compared to the patellar tendon bearing socket for lower limb amputees with unusual stump shape.

    Matched MeSH terms: Walking/physiology*
  5. Kamali M, Karimi MT, Eshraghi A, Omar H
    Am J Phys Med Rehabil, 2013 Dec;92(12):1110-8.
    PMID: 23900009 DOI: 10.1097/PHM.0b013e31829b4b7a
    Lower-limb amputation is mainly a result of trauma, vascular disease, diabetes, or congenital disorders. Persons with amputation lose their ability to stand and walk on the basis of the level of amputation. Contribution of level of amputation, type of amputation, or cause of amputation to balance impairment has not been clearly defined. Furthermore, it is controversial how much the mentioned parameters influence standing stability. Therefore, the aim of this review article was to find the relationship between the abovementioned factors and balance impairment in the available literature. It was also aimed to find the possibility of improving standing stability by the use of different prosthesis components.
    Matched MeSH terms: Walking/physiology*
  6. Singh VA, Ramalingam S, Haseeb A, Yasin NFB
    J Orthop Surg (Hong Kong), 2020 7 23;28(2):2309499020941659.
    PMID: 32696708 DOI: 10.1177/2309499020941659
    INTRODUCTION: Limb length discrepancy (LLD) of lower extremities is underdiagnosed due to compensatory mechanisms during locomotion. The natural course of compensation leads to biomechanical alteration in human musculoskeletal system leading to adverse effects. General consensus accepts LLD more than 2 cm as significant to cause biomechanical alteration. No studies were conducted correlating height and lower extremities true length (TL) to signify LLD. Examining significant LLD in relation to height and TL using dynamic gait analysis with primary focus on kinematics and secondary focus on kinetics would provide an objective evaluation method.

    METHODOLOGY: Forty participants with no evidence of LLD were recruited. Height and TL were measured. Reflective markers were attached at specific points in lower extremity and subjects walked in gait lab at a self-selected normal walking pace with artificial LLDs of 0, 1, 2, 3, and 4 cm simulated using shoe raise. Accommodation period of 30 min was given. Infrared cameras were used to capture the motion. Primary kinematic (knee flexion and pelvic obliquity (PO)) and secondary kinetic (ground reaction force (GRF)) were measured at right heel strike and left heel strike. Functional adaptation was analyzed and the postulated predictor indices (PIs) were used as a screening tool using height, LLD, and TL to notify significance.

    RESULTS: There was a significant knee flexion component seen in height category of less than 170 cm. There was significant difference between LLD 3 cm and 4 cm. No significant changes were seen in PO and GRF. PIs of LLD/height and LLD/TL were analyzed using receiver operating characteristic curve. LLD/height as a PI with value of 1.75 was determined with specificity of 80% and sensitivity of 76%.

    CONCLUSION: A height of less than 170 cm has significant changes in relation to LLD. PI using LLD/height appears to be a promising tool to identify patients at risk.

    Matched MeSH terms: Walking/physiology*
  7. Mehdizadeh S
    Gait Posture, 2018 Feb;60:241-250.
    PMID: 29304432 DOI: 10.1016/j.gaitpost.2017.12.016
    The largest Lyapunov exponent (LyE) is an accepted method to quantify gait stability in young and old adults. However, a range of LyE values has been reported in the literature for healthy young and elderly adults in normal walking. Therefore, it has been impractical to use the LyE as a clinical measure of gait stability. The aims of this systematic review were to summarize different methodological approaches of quantifying LyE, as well as to classify LyE values of different body segments and joints in young and elderly individuals during normal walking. The Pubmed, Ovid Medline, Scopus and ISI Web of Knowledge databases were searched using keywords related to gait, stability, variability, and LyE. Only English language articles using the Lyapunov exponent to quantify the stability of healthy normal young and old subjects walking on a level surface were considered. 102 papers were included for full-text review and data extraction. Data associated with the walking surface, data recording method, sampling rate, walking speed, body segments and joints, number of strides/steps, variable type, filtering, time-normalizing, state space dimension, time delay, LyE algorithm, and the LyE values were extracted. The disparity in implementation and calculation of the LyE was from, (i) experiment design, (ii) data pre-processing, and (iii) LyE calculation method. For practical implementation of LyE as a measure of gait stability in clinical settings, a standard and universally accepted approach of calculating LyE is required. Therefore, future studies should look for a standard and generalized procedure to apply and calculate LyE.
    Matched MeSH terms: Walking/physiology*
  8. Marconi G, Gopalai AA, Chauhan S
    Med Biol Eng Comput, 2023 May;61(5):1167-1182.
    PMID: 36689083 DOI: 10.1007/s11517-023-02778-2
    This simulation study aimed to explore the effects of mass and mass distribution of powered ankle-foot orthoses, on net joint moments and individual muscle forces throughout the lower limb. Using OpenSim inverse kinematics, dynamics, and static optimization tools, the gait cycles of ten subjects were analyzed. The biomechanical models of these subjects were appended with ideal powered ankle-foot orthoses of different masses and actuator positions, as to determine the effect that these design factors had on the subject's kinetics during normal walking. It was found that when the mass of the device was distributed more distally and posteriorly on the leg, both the net joint moments and overall lower limb muscle forces were more negatively impacted. However, individual muscle forces were found to have varying results which were attributed to the flow-on effect of the orthosis, the antagonistic pairing of muscles, and how the activity of individual muscles affect each other. It was found that mass and mass distribution of powered ankle-foot orthoses could be optimized as to more accurately mimic natural kinetics, reducing net joint moments and overall muscle forces of the lower limb, and must consider individual muscles as to reduce potentially detrimental muscle fatigue or muscular disuse. OpenSim modelling method to explore the effect of mass and mass distribution on muscle forces and joint moments, showing potential mass positioning and the effects of these positions, mass, and actuation on the muscle force integral.
    Matched MeSH terms: Walking/physiology
  9. Justine M, Manaf H, Sulaiman A, Razi S, Alias HA
    Biomed Res Int, 2014;2014:640321.
    PMID: 24977154 DOI: 10.1155/2014/640321
    This study compares energy expenditure (EE), gait parameters (GP), and level of fatigue (LOF) between 5-minute walking with sharp turning (ST) and corner turning (CT). Data were obtained from 29 community-dwelling elderly (mean age, 62.7 ± 3.54 years). For 5 minutes, in ST task, participants walked on a 3-meter pathway with 2 cones placed at each end (180° turning), while in CT task, participants walked on a 6-meter pathway with 4 cones placed at 4 corners (90° turning). The physiological cost index, pedometer, and 10-point Modified Borg Dyspnoea Scale were used to measure EE (beats/min), GP (no of steps), and LOF, respectively. Data were analyzed by using independent t-tests. EE during ST (0.62 ± 0.21 beats/min) was significantly higher than CT (0.48 ± 0.17 beats/min) (P < 0.05). GP (434 ± 92.93 steps) and LOF (1.40 ± 1.11) in ST were found to be lower compared to GP (463 ± 92.18 steps) and LOF (1.54 ± 1.34) in CT (All, P > 0.05). Higher EE in ST could be due to the difficulty in changing to a 180° direction, which may involve agility and different turning strategies (step-turn or pivot-turn) to adjust the posture carefully. In CT, participants could choose a step-turn strategy to change to a 90° direction, which was less challenging to postural control.
    Matched MeSH terms: Walking/physiology*
  10. Aboutorabi A, Saeedi H, Kamali M, Farahmand B, Eshraghi A, Dolagh RS
    Prosthet Orthot Int, 2014 Jun;38(3):218-23.
    PMID: 23986466 DOI: 10.1177/0309364613496111
    BACKGROUND: Flat foot in children is a common deformity in which the medial longitudinal arch is reduced or eliminated.
    OBJECTIVES: The objective of this article was to compare flat foot and healthy children on the displacement of the center of pressure and walking parameters in children with two common orthoses (functional foot orthosis and medical shoe).
    STUDY DESIGN: Comparative study.
    METHODS: This study included 30 children with flat foot and 20 healthy children as a control group. The step length and width, walking velocity, symmetry, and center of pressure (CoP) displacements were recorded and compared for three conditions: functional foot orthosis and regular shoe, a medical shoe and barefoot.
    RESULTS: The results from the CoP displacements showed that the regular shoe with functional foot orthosis caused a significant decrease in the level of displacement of the CoP in flat foot children. The findings indicated a significant improvement in symmetry of steps and walking speed with the functional foot orthosis in comparison to the medical shoe in flat foot children.
    CONCLUSION: The CoP displacement was decreased and the percentage of gait symmetry and walking speed were increased by the use of regular shoes with a functional foot orthosis in comparison to the medical shoes.
    CLINICAL RELEVANCE: An orthopaedic shoe can be expensive, and in particular heavy with most children reluctant to wear it. This study focussed on the CoP displacement and selected gait parameters with an orthopaedic shoe and functional foot orthosis, and showed that a combined prescription of a functional foot orthosis and with regular shoes may be a useful alternative for children with moderate flat foot.
    KEYWORDS: Center of pressure; flexible flat foot; functional foot orthosis; gait; medical shoe
    Matched MeSH terms: Walking/physiology
  11. Eshraghi A, Maroufi N, Sanjari MA, Saeedi H, Keyhani MR, Gholizadeh H, et al.
    Prosthet Orthot Int, 2013 Feb;37(1):76-84.
    PMID: 22751219 DOI: 10.1177/0309364612448805
    Biomechanical factors, such as spinal deformities can result in balance control disorders.
    Matched MeSH terms: Walking/physiology
  12. Fazreena Othman N, Salleh Basaruddin K, Hanafi Mat Som M, Shukry Abdul Majid M, Razak Sulaiman A
    Acta Bioeng Biomech, 2019;21(1):55-62.
    PMID: 31197285
    PURPOSE: The aim of this study was to examine the joint contact forces (JCF) between each limb as the LLD magnitude increases during walking activity.

    METHODS: Eighteen male healthy subjects volunteered to participate in the experiment. Walking gait analysis was conducted with eight different levels of insole to simulate the LLD, starting from 0 cm until 4.0 cm with 0.5 cm increment. Qualisys Track Manager System and C-motion Visual 3D biomechanical tools were used to analyse the results. Four joints (ankle, knee, hip, and pelvis) of lower limb of two legs were investigated. The increment of insoles was placed on the right leg to represent the long leg.

    RESULTS: The results suggest that the mean contact forces for all joints in the short leg were increased as the increment level increased. On the contrary, the mean contact forces in the long leg decreased when the LLD level increased. Among these four joints, JCF in hip shows a positive increment based on the ASI value. Means that hip shows the most affected joint as the LLD level increase.

    CONCLUSIONS: The result obtained in this study might help clinicians treat patients with a structural LLD for treatment plan including surgical intervention.

    Matched MeSH terms: Walking/physiology*
  13. Fauzi AA, Khayat MM, Sabirin S, Haron N, Mohamed MNA, Davis GM
    J Pediatr Rehabil Med, 2019;12(2):161-169.
    PMID: 31227664 DOI: 10.3233/PRM-180538
    OBJECTIVE: To investigate outcomes after 8 weeks of a structured home-based exercise program (SHEP) for improving walking ability in ambulant children with cerebral palsy (CP).

    METHOD: Eleven children participated in this study (7 males and 4 females, mean age 10 years 3 months, standard deviation (SD) 3y) with Gross Motor Function Classification System (GMFCS) I-III. This study used a prospective multiple assessment baseline design to assess the effect of SHEP upon multiple outcomes obtained in three different phases. Exercise intensity was quantified by OMNI-RPE assessed by caregivers and children. Outcome assessments of walking speed, GMFM-66 and physiological cost index (PCI) were measured four times at pre-intervention (Phase 1) and at 3-weekly intervals over eight weeks during intervention (Phase 2). Follow-up assessments were performed at one month and three months after intervention (Phase 3). Statistical analyses were repeated measures ANOVA and Wilcoxon signed-rank test.

    RESULTS: SHEP improved walking ability in children with CP, particularly for their walking speed (p= 0.01, Cohen's d= 1.9). The improvement of GMFM-66 scores during Phase 2 and Phase 3 had a large effect size, with Cohen's d of 1.039 and 1.054, respectively, compared with that during Phase 1 (p< 0.017). No significant change of PCI was observed (Cohen's d= 0.39).

    CONCLUSION: SHEP can be a useful intervention tool, given as a written, structured, and practical exercise program undertaken at home to achieve short term goals for improving walking ability when added to standard care.

    Matched MeSH terms: Walking/physiology*
  14. Metzger FG, Ehlis AC, Haeussinger FB, Schneeweiss P, Hudak J, Fallgatter AJ, et al.
    Neuroscience, 2017 02 20;343:85-93.
    PMID: 27915210 DOI: 10.1016/j.neuroscience.2016.11.032
    Since functional imaging of whole body movements is not feasible with functional magnetic resonance imaging (fMRI), the present study presents in vivo functional near-infrared spectroscopy (fNIRS) as a suitable technique to measure body movement effects on fronto-temporo-parietal cortical activation in single- and dual-task paradigms. Previous fNIRS applications in studies addressing whole body movements were typically limited to the assessment of prefrontal brain areas. The current study investigated brain activation in the frontal, temporal and parietal cortex of both hemispheres using functional near-infrared spectroscopy (fNIRS) with two large 4×4 probe-sets with 24 channels each during single and dual gait tasks. 12 young healthy adults were measured using fNIRS walking on a treadmill: the participants performed two single-task (ST) paradigms (walking at different speeds, i.e. 3 and 5km/h) and a dual task (DT) paradigm where a verbal fluency task (VFT) had to be executed while walking at 3km/h. The results show an increase of activation in Broca's area during the more advanced conditions (ST 5km/h vs. ST 3km/h, DT vs. ST 3km/h, DT vs. 5km/h), while the corresponding area on the right hemisphere was also activated. DT paradigms including a cognitive task in conjunction with whole body movements elicit wide-spread cortical activation patterns across fronto-temporo-parietal areas. An elaborate assessment of these activation patterns requires more extensive fNIRS assessments than the traditional prefrontal investigations, e.g. as performed with portable fNIRS devices.
    Matched MeSH terms: Walking/physiology*
  15. Mirza FT, Jenkins S, Justine M, Cecins N, Hill K
    Respirology, 2018 Jul;23(7):674-680.
    PMID: 29446206 DOI: 10.1111/resp.13262
    BACKGROUND AND OBJECTIVE: There is increased use of the 2-min walk test (2MWT) to assess functional exercise capacity. However, the distance achieved during this test may be difficult to interpret in the absence of reference values from a local population. Regression equations to estimate the 2-min walk distance (2MWD) only exist for American and Brazilian populations. The objective of this study was to develop regression equations to estimate the 2MWD in Malaysian adults who were free from major health problems.
    METHODS: Eighty-seven adults (43 males; mean ± SD age: 57.1 ± 9.6 years) performed two 2MWT using a standardized protocol. Heart rate (HR) was recorded every 30 s during the test. Stepwise multiple regression analysis was performed using age, gender, height, weight and change in HR (ΔHR) as independent variables, and better of the two 2MWD as the dependent variable. A second regression equation, without ΔHR, was planned if ΔHR was retained as one of the predictors of the 2MWD in the first equation.
    RESULTS: The better of the two 2MWD was 200 ± 34 m. Males walked 33 ± 6 m further than females (P < 0.001). The two regression equations were 196 - 1.1 × age, years + 1.0 × ΔHR, bpm + 31.2 × gender (R2 = 0.73) and 279 - 1.7 × age, years + 35.9 × gender (R2 = 0.47) with females = 0 and males = 1.
    CONCLUSION: The equations derived in this study may facilitate the interpretation of the 2MWD in clinical populations in Malaysia, as well as in countries with similar cultural backgrounds to Malaysia.
    Study site: volunteers from four villages in the Batu sub-district, Gombak, Malaysia
    Matched MeSH terms: Walking/physiology*
  16. Atherton G, Sebanz N, Cross L
    PLoS One, 2019;14(5):e0216585.
    PMID: 31086399 DOI: 10.1371/journal.pone.0216585
    Stereotyping is a pervasive societal problem that impacts not only minority groups but subserves individuals who perpetuate stereotypes, leading to greater distance between groups. Social contact interventions have been shown to reduce prejudice and stereotyping, but optimal contact conditions between groups are often out of reach in day to day life. Therefore, we investigated the effects of a synchronous walking intervention, a non-verbal embodied approach to intergroup contact that may reduce the need for optimal contact conditions. We studied attitude change towards the Roma group in Hungary following actual and imagined walking, both in a coordinated and uncoordinated manner. Results showed that coordinated walking, both imagined and in vivo, led to explicit and implicit reductions in prejudice and stereotyping towards both the Roma individual and the wider Roma social group. This suggests that coordinated movement could be a valuable addition to current approaches towards prejudice reduction.
    Matched MeSH terms: Walking/physiology*
  17. Saad MF, Cheah WL, Hazmi H
    J Prev Med Public Health, 2021 May;54(3):199-207.
    PMID: 34092066 DOI: 10.3961/jpmph.20.584
    OBJECTIVES: Physical inactivity is the fourth leading global risk factor for mortality, followed by obesity. The combination of these risk factors is associated with non-communicable diseases, impaired physical function, and declining mental function. The World Health Organization recommends physical activity to reduce the mortality rate. Thus, this study examined the effects on anthropometric measurements of a 12-week walking program for elderly people in Samarahan, Sarawak, Malaysia with a 7000-step goal and weekly group walking activities.

    METHODS: A quasi-experimental study was conducted involving 109 elderly people with a body mass index (BMI) ≥25.0 kg/m2. BMI, body composition, and average daily steps were measured at baseline, 6 weeks, and 12 weeks. Data were analyzed using SPSS version 26.0, and repeated-measures analysis of variance with the paired t-test for post-hoc analysis was conducted.

    RESULTS: In total, 48 participants in the intervention group and 61 participants in the control group completed the study. A significant interaction was found between time and group. The post-hoc analysis showed a significant difference between pre-intervention and post-intervention (within the intervention group). The post-intervention analysis revealed an increase in the mean number of daily steps by 3571.59, with decreases in body weight (-2.20 kg), BMI (-0.94 kg/m2), body fat percentage (-3.52%), visceral fat percentage (-1.29%) and waist circumference (-2.91 cm). Skeletal muscle percentage also showed a significant increase (1.67%).

    CONCLUSIONS: A 12-week walking program combining a 7000-step goals with weekly group walking activities had a significant effect on the anthropometric measurements of previously inactive and overweight/obese elderly people.

    Matched MeSH terms: Walking/physiology
  18. Omar A, Husain MN, Jamil AT, Nor NSM, Ambak R, Fazliana M, et al.
    BMC Womens Health, 2018 07 19;18(Suppl 1):103.
    PMID: 30066645 DOI: 10.1186/s12905-018-0598-9
    BACKGROUND: Regular physical activity has always been strongly recommended for good cardiovascular health. This study aimed to determine the effect of physical activity on fasting blood glucose and lipid profile among low income housewives in Klang Valley.

    METHODS: Data of 328 eligible housewives who participated in the MyBFF@Home study was used. Intervention group of 169 subjects were provided with an intervention package which includes physical activity (brisk walking, dumbbell exercise, physical activity diary, group exercise) and 159 subjects in control group received various health seminars. Physical activity level was assessed using short-International Physical Activity Questionnaire. The physical activity level was then re-categorized into 4 categories (active intervention, inactive intervention, active control and inactive control). Physical activity, blood glucose and lipid profile were measured at baseline, 3rd month and 6th month of the study. General Linear Model was used to determine the effect of physical activity on glucose and lipid profile.

    RESULTS: At the 6th month, there were 99 subjects in the intervention and 79 control group who had complete data for physical activity. There was no difference on the effect of physical activity on the glucose level and lipid profile except for the Triglycerides level. Both intervention and control groups showed reduction of physical activity level over time.

    CONCLUSION: The effect of physical activity on blood glucose and lipid profile could not be demonstrated possibly due to physical activity in both intervention and control groups showed decreasing trend over time.

    Matched MeSH terms: Walking/physiology*
  19. Sheykhi-Dolagh R, Saeedi H, Farahmand B, Kamyab M, Kamali M, Gholizadeh H, et al.
    Prosthet Orthot Int, 2015 Jun;39(3):190-6.
    PMID: 24604086 DOI: 10.1177/0309364614521652
    BACKGROUND: Flexible flat foot is described as a reduction in the height of the medial longitudinal arch and may occur from abnormal foot pronation. A foot orthosis is thought to modify and control excessive pronation and improve arch height.
    OBJECTIVE: To compare the immediate effect of three types of orthoses on foot mobility and the arch height index in subjects with flexible flat feet.
    STUDY DESIGN: A quasi-experimental study.
    METHOD: The dorsal arch height, midfoot width, foot mobility and arch height index were assessed in 20 participants with flexible flat feet (mean age = 23.2 ± 3 years) for three different foot orthosis conditions: soft, semi-rigid and rigid University of California Biomechanics Laboratory (UCBL).
    RESULTS: Maximum midfoot width at 90% with arch mobility in the coronal plane was shown in the semi-rigid orthosis condition. The semi-rigid orthosis resulted in the highest mean foot mobility in 90% of weight bearing, and the rigid orthosis (UCBL) had the lowest mean foot mobility. The soft orthosis resulted in foot mobility between that of the rigid and the semi-rigid orthosis. UCBL orthosis showed the highest arch height index, and the semi-rigid orthosis showed the lowest mean arch height index.
    CONCLUSION: Due to its rigid structure and long medial-lateral walls, the UCBL orthosis appears to limit foot mobility. Therefore, it is necessary to make an orthosis that facilitates foot mobility in the normal range of the foot arch. Future studies should address the dynamic mobility of the foot with using various types of foot orthoses.
    CLINICAL RELEVANCE: Although there are many studies focussed on flat foot and the use of foot orthoses, the mechanism of action is still unclear. This study explored foot mobility and the influence of foot orthoses and showed that a more rigid foot orthosis should be selected based on foot mobility.
    KEYWORDS: Foot orthosis; arch height index; foot mobility magnitude
    Matched MeSH terms: Walking/physiology
  20. Mortaza N, Abu Osman NA, Mehdikhani N
    Eur J Phys Rehabil Med, 2014 Dec;50(6):677-91.
    PMID: 24831570
    Fall is a common and a major cause of injuries. It is important to find elderlies who are prone to falls. The majority of serious falls occur during walking among the older adults. Analyzing the spatio-temporal parameters of walking is an easy way of assessment in the clinical setting, but is it capable of distinguishing a faller from a non-faller elderly? Through a systematic review of the literature, the objective of this systematic review was to identify and summarize the differences in the spatio-temporal parameters of walking in elderly fallers and non-fallers and to find out if these parameters are capable of distinguishing a faller from a non-faller. All original research articles which compared any special or temporal walking parameters in faller and non-faller elderlies were systematically searched within the Scopus and Embase databases. Effect size analysis was also done to standardize findings and compare the gait parameters of fallers and non-fallers across the selected studies. The electronic search led to 5381 articles. After title and abstract screening 30 articles were chosen; further assessment of the full texts led to 17 eligible articles for inclusion in the review. It seems that temporal measurements are more sensitive to the detection of risk of fall in elderly people. The results of the 17 selected studies showed that fallers have a tendency toward a slower walking speed and cadence, longer stride time, and double support duration. Also, fallers showed shorter stride and step length, wider step width and more variability in spatio-temporal parameters of gait. According to the effect size analysis, step length, gait speed, stride length and stance time variability were respectively more capable of differentiating faller from non-faller elderlies. However, because of the difference of methodology and number of studies which investigated each parameter, these results are prone to imprecision. Spatio-temporal analysis of level walking is not sufficient and cannot act as a reliable predictor of falls in elderly individuals.
    Matched MeSH terms: Walking/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links