Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Hajeb P, Jinap S, Ismail A, Mahyudin NA
    PMID: 22610296 DOI: 10.1007/978-1-4614-3414-6_2
    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to humans in Malaysia will be useful in establishing the levels at which detrimental effects in both humans and marine life may occur, and therefore the levels at which warning should be raised or limits established. In particular, we believe that two or three monitoring centers should be established in Peninsular Malaysia, and one in East Malaysia for the specific purpose of monitoring for the presence of hazardous environmental chemicals, and particularly monitoring for heavy metals such as mercury that reach food that is subject to consistent human consumption.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  2. Vedamanikam VJ, Shazilli NA
    Bull Environ Contam Toxicol, 2008 Jan;80(1):63-7.
    PMID: 18058048
    A study was conducted on the long term effects of nine heavy metals on the Chironomus plumosus and Culicoides furens larvae. This study tested the effect of the heavy metals on several generations of the larvae to observe the formation of increased hardiness against pollutants present within the aquatic habitat. From this study it was observed that susceptibility or sensitivity to heavy metals decreased with LC50 values becoming larger indicating a decreased toxicity level. Significant variations (p < 0.05) were observed between first generation and third generation culicoides for all metals and at all concentrations. Variations between third and fourth generation culicoides were also significantly different (p < 0.05) with the exception of chromium at 25 degrees C and nickel and lead at every temperature range group. The variation between all generations 4, 5 and 6 was found to be insignificant (p > 0.05). This would indicate that metal tolerance would have occurred in these generations and the effect of metals was less toxic to the culicoides. Generation 9 was found to have LC50 values (p > 0.05) the same as the LC50 values obtained in third generation culicoides. Thus it would appear that heavy metal resistance was developed when the organisms were exposed to prolonged exposure of the heavy metals but was lost when the organisms were bred in non-contaminated water.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  3. Chuah TS, Loh JY, Hii YS
    Bull Environ Contam Toxicol, 2007 Nov;79(5):557-61.
    PMID: 17639329
    Acute and chronic effects of insecticide-endosulfan on the survival and reproduction performance of Moina macrocopa were determined in a laboratory study. Endosulfan concentrations that cause 50% mortality (LC50) after exposure for 24 and 48 h were 3.34 and 0.16 mg L(-1), respectively. Average longevity, initial age of reproduction and intrinsic rate of natural increase were reduced at 0.002 mg L(-1). Fecundity was greatly reduced by about 70% at 0.0004 mg L(-1) and approximately 97% at 0.002 mg L(-1) as compared to control organisms throughout the whole life span of 15 days. If environmental concentration of endosulfan do not exceed 0.0004 mg L(-1), application of this insecticide is unlikely to induce detrimental effects on these cladoceran populations in agro-ecosystem.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  4. Tay KS, Madehi N
    Sci Total Environ, 2015 Jul 1;520:23-31.
    PMID: 25791053 DOI: 10.1016/j.scitotenv.2015.03.033
    Application of ozonation in water treatment involves complex oxidation pathways that could lead to the formation of various by-products, some of which may be harmful to living organisms. In this work, ozonation by-products of ofloxacin (OFX), a frequently detected pharmaceutical pollutant in the environment, were identified and their ecotoxicity was estimated using the Ecological Structure Activity Relationships (ECOSAR) computer program. In order to examine the role of ozone (O3) and hydroxyl radicals (∙OH) in the degradation of ofloxacin, ozonation was performed at pH2, 7 and 12. In this study, 12 new structures have been proposed for the ozonation by-products detected during the ozonation of ofloxacin. According to the identified ozonation by-products, O3 and ∙OH were found to react with ofloxacin during ozonation. The reaction between ofloxacin and O3 proceeded via hydroxylation and breakdown of heterocyclic ring with unsaturated double-bond. The reaction between ofloxacin and ·OH generated various by-products derived from the breakdown of heterocyclic ring. Ecotoxicity assessment indicated that ozonation of OFX could yield by-products of greater toxicity compared with parent compounds.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  5. Romano N, Ashikin M, Teh JC, Syukri F, Karami A
    Environ Pollut, 2018 Jun;237:1106-1111.
    PMID: 29157968 DOI: 10.1016/j.envpol.2017.11.040
    Silver barb Barbodes gonionotus fry were exposed to polyvinyl chloride (PVC) fragments at increasing concentrations of 0.2, 0.5 and 1.0 mg/L for 96 h, following which whole body histological evaluation and analysis of the digestive enzymes trypsin and chymotrypsin were performed. Whole body trypsin and chymotrypsin activities increased significantly in fish exposed to 0.5 and 1.0 mg/L PVC as compared those exposed to zero or 0.2 mg/L PVC. In fish exposed to all tested concentrations, PVCs were observed in both the proximal and distal intestine, and fish exposed to 0.5-1.0 and 1.0 mg/L PVC, respectively, and these particles were associated with localized thickening of the mucosal epithelium. No tissue damage was evident in any other internal organs or gills. This lack of damage may be attributed to the absence of contaminants associated with the PVC fragments and their relatively smooth surface. The increased whole body trypsin and chymotrypsin activities may indicate an attempt to enhance digestion to compensate for epithelial thickening of the intestine and/or to digest the plastics.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  6. Karami A
    Chemosphere, 2017 Oct;184:841-848.
    PMID: 28646766 DOI: 10.1016/j.chemosphere.2017.06.048
    The contamination of aquatic environments with microplastics (MPs) has spurred an unprecedented interest among scientific communities to investigate their impacts on biota. Despite the rapid growth in the number of studies on the aquatic toxicology of MPs, controversy over the fate and biological impacts of MPs is increasingly growing mainly due to the absence of standardized laboratory bioassays. Given the complex features of MPs, such as the diversity of constituent polymers, additives, shapes and sizes, as well as continuous changes in the particle buoyancy as a result of fouling and defouling processes, it is necessary to modify conventional bioassay protocols before employing them for MP toxicity testings. Moreover, several considerations including quantification of chemicals on/in the MP particles, choice of test organisms, approaches for renewing the test solution, aggregation prevention, stock solution preparation, and units used to report MP concentration in the test solution should be taken into account. This critical review suggests some important strategies to help conduct environmentally-relevant MP bioassays.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  7. van de Merwe JP, Hodge M, Olszowy HA, Whittier JM, Ibrahim K, Lee SY
    Environ Health Perspect, 2009 Sep;117(9):1397-401.
    PMID: 19750104 DOI: 10.1289/ehp.0900813
    Persistent organic pollutants (POPs)-such as organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs)-and heavy metals have been reported in sea turtles at various stages of their life cycle. These chemicals can disrupt development and function of wildlife. Furthermore, in areas such as Peninsular Malaysia, where the human consumption of sea turtle eggs is prevalent, egg contamination may also have public health implications.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  8. Wee SY, Aris AZ
    Environ Int, 2017 09;106:207-233.
    PMID: 28552550 DOI: 10.1016/j.envint.2017.05.004
    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  9. Shuhaimi-Othman M, Nur-Amalina R, Nadzifah Y
    ScientificWorldJournal, 2012;2012:125785.
    PMID: 22666089 DOI: 10.1100/2012/125785
    Adult freshwater snails Melanoides tuberculata (Gastropod, Thiaridae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed and median lethal times (LT₅₀) and concentrations (LC₅₀) were calculated. LT₅₀ and LC₅₀ increased with the decrease in mean exposure concentrations and times, respectively, for all metals. The LC(50) values for the 96-hour exposures to Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.14, 1.49, 3.90, 6.82, 8.46, 8.49, 68.23, and 45.59 mg L⁻¹, respectively. Cu was the most toxic metal to M. tuberculata, followed by Cd, Zn, Pb, Ni, Fe, Mn, and Al (Cu > Cd > Zn > Pb > Ni > Fe > Mn > Al). Metals bioconcentration in M. tuberculata increases with exposure to increasing concentrations and Cu has the highest accumulation (concentration factor) in the soft tissues. A comparison of LC₅₀ values for metals for this species with those for other freshwater gastropods reveals that M. tuberculata is equally sensitive to metals.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  10. Cheah WY, Show PL, Chang JS, Ling TC, Juan JC
    Bioresour Technol, 2015 May;184:190-201.
    PMID: 25497054 DOI: 10.1016/j.biortech.2014.11.026
    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  11. Mohamat-Yusuff F, Zulkifli SZ, Otake T, Harino H, Ismail A
    J Environ Biol, 2014 Sep;35(5):995-1003.
    PMID: 25204078
    The morphological expressions and histopathological analysis of the gonads of a tropical marine neogastropod species (Thais sp.) from East Malaysia revealed new evidence of mechanical sterility in the imposex affected females. The gradual development of imposex was classified into five stages (Stage 0 to Stage 4) with three types of sterility conditions; Type A caused prohibition of copulation and capsule formation; Type B prohibits the releasing process of eggs; and gonads in Type C are infertile. Further analysis is needed to confirm, if the gonad malformation in imposex affected snails is generated specifically by tributyltin (TBT) or by other possible factors. The levels of imposex incidence (stages and percentages) were greater in a marina and decreased with increasing distance from the marina. Organotin tissue burden across the sexes showed that dibutyltin (DBT) as well as TBT might be the elements inducing imposex in Thais sp. from Miri in East Malaysia.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  12. Mori IC, Arias-Barreiro CR, Koutsaftis A, Ogo A, Kawano T, Yoshizuka K, et al.
    Chemosphere, 2015 Feb;120:299-304.
    PMID: 25151133 DOI: 10.1016/j.chemosphere.2014.07.011
    The aquatic ecotoxicity of chemicals involved in the manufacturing process of thin film transistor liquid crystal displays was assessed with a battery of four selected acute toxicity bioassays. We focused on tetramethylammonium hydroxide (TMAH, CAS No. 75-59-2), a widely utilized etchant. The toxicity of TMAH was low when tested in the 72 h-algal growth inhibition test (Pseudokirchneriellia subcapitata, EC50=360 mg L(-1)) and the Microtox® test (Vibrio fischeri, IC50=6.4 g L(-1)). In contrast, the 24h-microcrustacean immobilization and the 96 h-fish mortality tests showed relatively higher toxicity (Daphnia magna, EC50=32 mg L(-1) and Oryzias latipes, LC50=154 mg L(-1)). Isobologram and mixture toxicity index analyses revealed apparent synergism of the mixture of TMAH and potassium iodide when examined with the D. magna immobilization test. The synergistic action was unique to iodide over other halide salts i.e. fluoride, chloride and bromide. Quaternary ammonium ions with longer alkyl chains such as tetraethylammonium and tetrabutylammonium were more toxic than TMAH in the D. magna immobilization test.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  13. Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Rahman MA, Safari O, et al.
    Mar Pollut Bull, 2014 Jul 15;84(1-2):268-79.
    PMID: 24855978 DOI: 10.1016/j.marpolbul.2014.05.004
    The concentration of carcinogenic poly aromatic hydrocarbons (c-PAHs) present in water and sediment of Klang Strait as well as in the edible tissue of blood cockle (Anadara granosa) was investigated. The human health risk of c-PAHs was assessed in accordance with the standards of the United States Environmental Protection Agency (US EPA). The cancer risks of c-PAHs to human are expected to occur through the consumption of blood cockles or via gastrointestinal exposure to polluted sediments and water in Kalng Strait. The non-carcinogenic risks that are associated with multiple pathways based on ingestion rate and contact rates with water were higher than the US EPA safe level at almost all stations, but the non-carcinogenic risks for eating blood cockle was below the level of US EPA concern. A high correlation between concentrations of c-PAHs in different matrices showed that the bioaccumulation of c-PAHs by blood cockles could be regarded as a potential health hazard for the consumers.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  14. Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Mehdinia A, Safari O
    PLoS One, 2014;9(4):e94907.
    PMID: 24747349 DOI: 10.1371/journal.pone.0094907
    Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  15. Yusof S, Ismail A, Alias MS
    Mar Pollut Bull, 2014 Aug 30;85(2):494-8.
    PMID: 24731878 DOI: 10.1016/j.marpolbul.2014.03.022
    Glyphosate is globally a widely used herbicide, yet there is little information on their toxicity to marine fishes. Java medaka, a small tropical fish native to coastal areas in several Southeast Asian countries, is viewed as a suitable candidate for toxicity test and thus was used for this study. Java medaka adults were cultured in the laboratory and the fertilized eggs of the F2 generation were exposed to different concentrations of glyphosate-based herbicide (100, 200, 300, 400 and 500 ppm) until they hatched. The survival and hatching rates of the embryos, changes in the heart rate and morphological impairments were recorded. Generally, survival and hatching percentage decreased as glyphosate concentration increased. Absence of pectoral fin(s) and cornea, permanently bent tail, irregular shaped abdomen, and cell disruption in the fin, head and abdomen are among the common teratogenic effects observed. Furthermore, risk factor also increased with the increased in glyphosate concentrations.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  16. Fauziah SH, Emenike CU, Agamuthu P
    Waste Manag Res, 2013 Oct;31(10 Suppl):75-80.
    PMID: 23800442 DOI: 10.1177/0734242X13492840
    Pollutants put great stress on the environment, especially the aquatic ecosystem; therefore, the ease with which pollutants migrate in water is a subject of global concern. In this study, leachate from landfill that was analyzed with the objective of understanding the potential impact to the environment was tested on Pangasius sutchi. Heavy metals available at various concentrations in raw leachate samples of both closed and active landfills necessitated the determination of their degree of bioaccumulation in this fish species in order to enrich the risk data on toxicity of effluents. Zinc (3.2 µg g(-1)), iron (2.1 µg g(-1)) and chromium (0.24 µg g(-1)) detected in the fish within 96 h of acute exposure is of concern. A histopathology test on excised liver of P. sutchi indicated cellular disruption from normal stain. Heterogeneous effluents like leachate may affect not only groundwater but can endanger aquatic ecosystems, especially in some regions where improper waste disposal and treatment allow the flow of leachate into surface water courses. Though metals might be beneficial to organisms, the extent at which they can accumulate in leachate-exposed fish is a risk and can initiate metal toxicity in aquatic life.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  17. Al-Baldawi IA, Abdullah SR, Anuar N, Suja F, Idris M
    J Hazard Mater, 2013 May 15;252-253:64-9.
    PMID: 23500791 DOI: 10.1016/j.jhazmat.2013.01.067
    In this study, bulrush (Scirpus grossus) was subjected to a 72 day phytotoxicity test to assess its ability to phytoremediate diesel contamination in simulated wastewater at different concentrations (0, 8700, 17,400 and 26,100mg/L). Diesel degradation by S. grossus was measured in terms of total petroleum hydrocarbon (TPH-D). The TPH-D concentration in the synthetic wastewater was determined with the liquid-liquid extraction method and gas chromatography. S. grossus was found to reduce TPH-D by 70.0 and 80.2% for concentrations of 8700 mg/L and 17,400mg/L, respectively. At a diesel concentration of 26,100mg/L, S. grossus died after 14 days. Additionally, the biomass of S. grossus plants was found to increase throughout the phytotoxicity test, confirming the ability of the plant to survive in water contaminated with diesel at rates of less than 17,400mg/L.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  18. Mohti A, Shuhaimi-Othman M, Gerhardt A
    J Environ Monit, 2012 Sep;14(9):2505-11.
    PMID: 22868673 DOI: 10.1039/c2em10902f
    The behavioral responses of guppy Poecilia reticulata (Poeciliidae) and prawn Macrobrachium lanchesteri (Palaemonidae) individuals exposed to acid mine drainage (AMD) were monitored online in the laboratory with a Multispecies Freshwater Biomonitor™ (MFB). These responses were compared to those to reference water acidified to the respective pH values (ACID). Test animals in the juvenile stage were used for both species and were exposed to AMD and ACID for 24 hours. The stress behaviors of both test animals consisted mainly of decreased activity in AMD and increased activity in ACID, indicating that the metals in the AMD played a role as a stress factor in addition to pH. The locomotor activity levels of guppies and prawns for the ACID treatment were higher than the locomotor activity levels for the AMD treatment with increasing pH value. For guppies, significant differences were observed when specimens were exposed to AMD and ACID at pH 5.0 and 6.0; the percentage activities were only 16% and 12%, respectively, for AMD treatment, whereas for ACID treatment, the percentage activities were 35% and 40%, respectively, similar to the value of 36% for the controls. Similar trends were also observed for prawns, for which the percentage activities were only 6% and 4%, respectively, for AMD treatment, whereas for ACID treatment, the percentage activities were 31% and 38%, respectively, compared to 44% in the controls. This study showed that both species are suitable for use as indicators for ecotoxicity testing with the MFB.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  19. Othman MS, Khonsue W, Kitana J, Thirakhupt K, Robson M, Borjan M, et al.
    Bull Environ Contam Toxicol, 2012 Aug;89(2):225-8.
    PMID: 22722596 DOI: 10.1007/s00128-012-0708-6
    Glutathione-S-Transferase (GST) and metallothionein are important biomarker endpoints in studying the effect of Cd exposure. The purpose of this research was to study the correlation between hepatic GST and metallothionein with hepatic Cd in wild Fejervarya limnocharis exposed to environmental Cd. Results showed that frogs from contaminated sites had significantly higher hepatic metallothionein (3.58 mg/kg wet weight) and GST activity (0.259 μmol/min/mg total protein) than those from the reference site (2.36 mg/kg wet weight and 0.157 μmol/min/mg total protein respectively). There was a significantly positive correlation between hepatic Cd and GST activity (r = 0.802, p = 0.009) but not between hepatic Cd and metallothionein (r = 0.548, p = 0.139). The results concluded that while frogs from the contaminated site had higher GST and metallothionein, only GST showed significant positive correlation with hepatic Cd levels, indicating that hepatic GST activity may be used as a biomarker endpoint.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  20. Mirsadeghi SA, Zakari MP, Yap CK, Shahbazi A
    J Environ Sci (China), 2011;23(2):336-45.
    PMID: 21517010
    The concentration of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) present in the sediment and water of Peninsular Malaysia as well as in the cockle Anadara granosa was investigated. Samples were extracted and analysed with gas chromatography-mass spectrometry. The concentrations of total carcinogenic polycyclic aromatic hydrocarbons (t-PAHs) were measured between 0.80 +/- 0.04 to 162.96 +/- 14.74 ng/g wet weight (ww) in sediment, between 21.85 +/- 2.18 to 76.2 +/- 10.82 ng/L in water samples and between 3.34 +/- 0.77 to 46.85 +/- 5.50 ng/g ww in the cockle tissue. The risk assessment of probable human carcinogens in the Group B2 PAHs was calculated and assessed in accordance with the standards of the United States Environmental Protection Agency (US EPA). Case I in the toxicity assessment analysed the cancer risk to consumers of Malaysian blood cockle. Case II assessed the risk of cancer from exposure to PAHs from multiple pathways. The average cancer risk of case I and case II were found to be classifiable as unsafe according to the US EPA standard. The cancer risk due to c-PAHs acquired by the ingestion of blood cockle was (8.82 +/- 0.54) x 10-6 to (2.67 +/- 0.06) x 10(-2), higher than the US EPA risk management criterion. The non-cancer risks associated with multiple pathways in Kuala Gula, Kuala Juru and Kuala Perlis were higher than the U.S. EPA safe level, but the non-cancer risk for eating blood cockle was below the level of U.S. EPA concern.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links