Displaying publications 1 - 20 of 40 in total

  1. Anarjan N, Tan CP, Nehdi IA, Ling TC
    Food Chem, 2012 Dec 1;135(3):1303-9.
    PMID: 22953858 DOI: 10.1016/j.foodchem.2012.05.091
    Astaxanthin colloidal particles were produced using solvent-diffusion technique in the presence of different food grade surface active compounds, namely, Polysorbate 20 (PS20), sodium caseinate (SC), gum Arabic (GA) and the optimum combination of them (OPT). Particle size and surface charge characteristics, rheological behaviour, chemical stability, colour, in vitro cellular uptake, in vitro antioxidant activity and residual solvent concentration of prepared colloidal particles were evaluated. The results indicated that in most cases the mixture of surface active compounds lead to production of colloidal particles with more desirable physicochemical and biological properties, as compared to using them individually. The optimum combination of PS20, SC and GA could produce the astaxanthin colloidal particles with small particle size, polydispersity index (PDI), conductivity and higher zeta potential, mobility, cellular uptake, colour intensity and in vitro antioxidant activity. In addition, all prepared astaxanthin colloidal particles had significantly (p<0.05) higher cellular uptake than pure astaxanthin powder.
    Matched MeSH terms: Xanthophylls/chemical synthesis; Xanthophylls/metabolism; Xanthophylls/chemistry
  2. Kaha M, Iwamoto K, Yahya NA, Suhaimi N, Sugiura N, Hara H, et al.
    Sci Rep, 2021 06 03;11(1):11708.
    PMID: 34083633 DOI: 10.1038/s41598-021-91128-z
    Microalgae are important microorganisms which produce potentially valuable compounds. Astaxanthin, a group of xanthophyll carotenoids, is one of the most powerful antioxidants mainly found in microalgae, yeasts, and crustaceans. Environmental stresses such as intense light, drought, high salinity, nutrient depletion, and high temperature can induce the accumulation of astaxanthin. Thus, this research aims to investigate the effect of black light, also known as long-wave ultraviolet radiation or UV-A, as a stressor on the accumulation of astaxanthin as well as to screen the antioxidant property in two tropical green algal strains isolated from Malaysia, Coelastrum sp. and Monoraphidium sp. SP03. Monoraphidium sp. SP03 showed a higher growth rate (0.66 day-1) compared to that of Coelastrum sp. (0.22 day-1). Coelastrum sp. showed significantly higher accumulation of astaxanthin in black light (0.999 g mL culture-1) compared to that in control condition (0.185 g mL-1). Similarly, Monoraphidium sp. SP03 showed higher astaxanthin content in black light (0.476 g mL culture-1) compared to that in control condition (0.363 g mL culture-1). Coelastrum sp. showed higher scavenging activity (30.19%) when cultured in black light condition, indicating a correlation between the antioxidant activity and accumulation of astaxanthin. In this study, black light was shown to possess great potential to enhance the production of astaxanthin in microalgae.
    Matched MeSH terms: Xanthophylls/metabolism
  3. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG
    Mar Drugs, 2014 Jan;12(1):128-52.
    PMID: 24402174 DOI: 10.3390/md12010128
    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-β, β'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.
    Matched MeSH terms: Xanthophylls/adverse effects; Xanthophylls/biosynthesis; Xanthophylls/isolation & purification; Xanthophylls/pharmacokinetics; Xanthophylls/pharmacology; Xanthophylls/chemistry
  4. Anarjan N, Jafarizadeh-Malmiri H, Nehdi IA, Sbihi HM, Al-Resayes SI, Tan CP
    Int J Nanomedicine, 2015;10:1109-18.
    PMID: 25709435 DOI: 10.2147/IJN.S72835
    Nanodispersion systems allow incorporation of lipophilic bioactives, such as astaxanthin (a fat soluble carotenoid) into aqueous systems, which can improve their solubility, bioavailability, and stability, and widen their uses in water-based pharmaceutical and food products. In this study, response surface methodology was used to investigate the influences of homogenization time (0.5-20 minutes) and speed (1,000-9,000 rpm) in the formation of astaxanthin nanodispersions via the solvent-diffusion process. The product was characterized for particle size and astaxanthin concentration using laser diffraction particle size analysis and high performance liquid chromatography, respectively. Relatively high determination coefficients (ranging from 0.896 to 0.969) were obtained for all suggested polynomial regression models. The overall optimal homogenization conditions were determined by multiple response optimization analysis to be 6,000 rpm for 7 minutes. In vitro cellular uptake of astaxanthin from the suggested individual and multiple optimized astaxanthin nanodispersions was also evaluated. The cellular uptake of astaxanthin was found to be considerably increased (by more than five times) as it became incorporated into optimum nanodispersion systems. The lack of a significant difference between predicted and experimental values confirms the suitability of the regression equations connecting the response variables studied to the independent parameters.
    Matched MeSH terms: Xanthophylls/pharmacokinetics; Xanthophylls/chemistry
  5. Anarjan N, Nehdi IA, Sbihi HM, Al-Resayes SI, Malmiri HJ, Tan CP
    Molecules, 2014 Sep 10;19(9):14257-65.
    PMID: 25211006 DOI: 10.3390/molecules190914257
    The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble carotenoid) in nanodispersion systems can either increase the water solubility, stability and bioavailability or widen their applications in aqueous food and pharmaceutical formulations. In this research, gelatin and its combinations with sucrose oleate as a small molecular emulsifier, sodium caseinate (SC) as a protein and gum Arabic as a polysaccharide were used as stabilizer systems in the formation of astaxanthin nanodispersions via an emulsification-evaporation process. The results indicated that the addition of SC to gelatin in the stabilizer system could increase the chemical stability of astaxanthin nanodispersions significantly, while using a mixture of gelatin and sucrose oleate as a stabilizer led to production of nanodispersions with the smallest particle size (121.4±8.6 nm). It was also shown that a combination of gelatin and gum Arabic could produce optimal astaxanthin nanodispersions in terms of physical stability (minimum polydispersity index (PDI) and maximum zeta-potential). This study demonstrated that the mixture of surface active compounds showed higher emulsifying and stabilizing functionality compared to using them individually in the preparation of astaxanthin nanodispersions.
    Matched MeSH terms: Xanthophylls/chemistry
  6. Binti Ibnu Rasid EN, Mohamad SE, Jamaluddin H, Salleh MM
    Appl Biochem Biotechnol, 2014 Feb;172(4):2160-74.
    PMID: 24338298 DOI: 10.1007/s12010-013-0644-x
    Astaxanthin, a carotenoid pigment found in several aquatic organisms, is responsible for the red colour of salmon, trout and crustaceans. In this study, astaxanthin production from freshwater microalga Chlorella sorokiniana and marine microalga Tetraselmis sp. was investigated. Cell growth and astaxanthin production were determined spectrophotometrically at 620 and 480 nm, respectively. Astaxanthin was extracted using acetone and measured subsequent to biomass removal. Aerated conditions favoured astaxanthin production in C. sorokiniana, whereas Tetraselmis sp. was best cultured under unaerated conditions. C. sorokiniana produced more astaxanthin with the highest yield reached at 7.83 mg/l in 6.0 mM in nitrate containing medium compared to Tetraselmis sp. which recorded the highest yield of only 1.96 mg/l in 1.5 mM nitrate containing medium. Production in C. sorokiniana started at the early exponential phase, indicating that astaxanthin may be a growth-associated product in this microalga. Further optimization of astaxanthin production was performed using C. sorokiniana through a 2(3) full factorial experimental design, and a yield of 8.39 mg/l was achieved. Overall, the study has shown that both microalgae are capable of producing astaxanthin. Additionally, this research has highlighted C. sorokiniana as a potential astaxanthin producer that could serve as a natural astaxanthin source in the current market.
    Matched MeSH terms: Xanthophylls/metabolism
  7. Khoo KS, Ooi CW, Chew KW, Foo SC, Show PL
    Bioresour Technol, 2021 Feb;322:124520.
    PMID: 33348114 DOI: 10.1016/j.biortech.2020.124520
    Ionic liquids (ILs) have emerged as an alternative solvent used in the bioprocessing of microalgae for recovery of valuable biomolecules. The aim of this work is to extract fucoxanthin from Chaetoceros calcitrants (C. calcitrans) by using the readily distillable CO2-based alkyl carbamate ILs. The degree of cell permeabilization was analysed by the quantification of extracted fucoxanthin and the analyses of cell surface morphology. Among the tested CO2-based alkyl carbamate ILs, diallylammonium diallylcarbamate (DACARB) extraction system gave the maximal yield of fucoxanthin at 17.51 mg/g under the optimal extraction conditions [90% (v/v), 3 min and 25 °C]. Moreover, the extracted fucoxanthin fraction exhibited the satisfactory antioxidant activities. The recyclability of DACARB was demonstrated in the multiple batches of fucoxanthin extraction. Hence, CO2-based alkyl carbamate ILs can prospectively substitute conventional organic solvents in the downstream processing of bioactive compounds from microalgae.
    Matched MeSH terms: Xanthophylls
  8. Chen JH, Wei D, Lim PE
    Bioresour Technol, 2020 Jan;295:122242.
    PMID: 31629282 DOI: 10.1016/j.biortech.2019.122242
    Phytohormones comprise a variety of trace bioactive compounds that can stimulate cell growth and promote metabolic shifts. In the present work, a two-stage screening strategy was innovatively established to identify positive phytohormones for enhancement of astaxanthin and lipid coproduction in microplate-based cultures of mixotrophic Chromochloris zofingiensis. The results showed that auxins were the most efficient stimulators for astaxanthin accumulation. The maximum content of 13.1 mg/g and yield of 89.9 mg/L were obtained using indole propionic acid (10 mg/L) and indoleacetic acid (7.8 mg/L), representing the highest levels of astaxanthin in this microalga reported to date. Total lipids with the highest content (64.5% DW) and productivity (445.7 mg/L/d) were coproduced with astaxanthin using indoleacetic acid. Statistical analysis revealed close relations between phytohormones and astaxanthin and lipid biosynthesis. This study provides a novel original strategy for improving astaxanthin and lipid coproduction in C. zofingiensis using the selected phytohormones as positive stimulators.
    Matched MeSH terms: Xanthophylls
  9. Ng HS, Kee PE, Wu YC, Chen L, Wong SYW, Lan JC
    J Biosci Bioeng, 2021 Nov;132(5):513-518.
    PMID: 34479804 DOI: 10.1016/j.jbiosc.2021.07.004
    Microbial astaxanthin with strong antioxidant activity is greatly demanded for diverse applications. Extractive disruption in aqueous biphasic system (ABS) integrates the cells disruption and biomolecules recovery processes in one-step operation, allowing the direct recovery of intracellular biomolecules with biphasic system upon released from cells. In this study, astaxanthin was recovered from recombinant Kluyveromyces marxianus yeast cells via extractive disruption using alcohol/salt ABS. Recombinant K. marxianus yeast is engineered to produce high concentration of free form astaxanthin. Highest partition coefficient (K = 90.02 ± 2.25) and yield (Y = 96.80% ± 0.05) of astaxanthin were obtained with ABS composed of 20% (w/w) 1-propanol and 20% (w/w) sodium citrate of pH 5, 0.5% (w/w) yeast cells loading and additional of 1% (w/w) 1-butyl-3-methylimidazolium tetrafluoroborate (Bmim)BF4 to improve the migration of astaxanthin to alcohol-rich top phase. The incorporation of 2.5 h of ultrasonication to the biphasic system further enhanced the astaxanthin recovery in ABS. The direct recovery of astaxanthin from recombinant K. marxianus cells was demonstrated with the ultrasonication-assisted alcohol/salt ABS which integrates the extraction and concentration of astaxanthin in a single-step operation.
    Matched MeSH terms: Xanthophylls
  10. Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, et al.
    ScientificWorldJournal, 2014;2014:768323.
    PMID: 24526922 DOI: 10.1155/2014/768323
    Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.
    Matched MeSH terms: Xanthophylls/isolation & purification; Xanthophylls/metabolism*; Xanthophylls/therapeutic use
  11. Khoo KS, Chew KW, Ooi CW, Ong HC, Ling TC, Show PL
    Bioresour Technol, 2019 Oct;290:121794.
    PMID: 31319214 DOI: 10.1016/j.biortech.2019.121794
    This work aimed to study the application of liquid biphasic flotation (LBF) for the efficient and rapid recovery of astaxanthin from H. pluvialis microalgae. The performance of LBF for the extraction of astaxanthin was studied comprehensively under different operating conditions, including types and concentrations of food-grade alcohol and salt, volume ratio, addition of neutral salt, flotation period, and mass of dried H. pluvialis biomass powder. The maximum recovery, extraction efficiency and partition coefficient of astaxanthin obtained from the optimum LBF system were 95.11 ± 1.35%, 99.84 ± 0.05% and 385.16 ± 3.87, respectively. A scaled-up LBF system was also performed, demonstrating the feasibility of extracting natural astaxanthin from microalgae at a larger scale. This exploration of LBF system opens a promising avenue to the extraction of astaxanthin at lower cost and shorter processing time.
    Matched MeSH terms: Xanthophylls
  12. Khoo KS, Lee SY, Ooi CW, Fu X, Miao X, Ling TC, et al.
    Bioresour Technol, 2019 Sep;288:121606.
    PMID: 31178260 DOI: 10.1016/j.biortech.2019.121606
    Haematococcus pluvialis is one of the most abundant sources of natural astaxanthin as compared to others microorganism. Therefore, it is important to understand the biorefinery of astaxanthin from H. pluvialis, starting from the cultivation stage to the downstream processing of astaxanthin. The present review begins with an introduction of cellular morphologies and life cycle of H. pluvialis from green vegetative motile stage to red non-motile haematocyst stage. Subsequently, the conventional biorefinery methods (e.g., mechanical disruption, solvent extraction, direct extraction using vegetable oils, and enhanced solvent extraction) and recent advanced biorefinery techniques (e.g., supercritical CO2 extraction, magnetic-assisted extraction, ionic liquids extraction, and supramolecular solvent extraction) were presented and evaluated. Moreover, future prospect and challenges were highlighted to provide a useful guide for future development of biorefinery of astaxanthin from H. pluvialis. The review aims to serve as a present knowledge for researchers dealing with the bioproduction of astaxanthin from H. pluvialis.
    Matched MeSH terms: Xanthophylls
  13. Raman R, Mohamad SE
    Pak J Biol Sci, 2012 Dec 15;15(24):1182-6.
    PMID: 23755409
    There are numerous commercial applications of microalgae nowadays owing to their vast biotechnological and economical potential. Indisputably, astaxanthin is one of the high value product synthesized by microalgae and is achieving commercial success. Astaxanthin is a keto-carotenoid pigment found in many aquatic animals including microalgae. Astaxanthin cannot be synthesized by animals and provided in the diet is compulsory. In this study, the production of astaxanthin by the freshwater microalgae Chlorella sorokiniana and marine microalgae Tetraselmis sp. were studied. The relationship between growth and astaxanthin production by marine and freshwater microalgae cultivated under various carbon sources and concentrations, environmental conditions and nitrate concentrations was investigated in this study. Inorganic carbon source and low nitrate concentration favored the growth and production of astaxanthin by the marine microalgae Tetraselmis sp. and the freshwater microalgae Chlorella sorokiniana. Outdoor cultivation enhanced the growth of microalgae, while indoor cultivation promoted the formation of astaxanthin. The results indicated that supplementation of light, inorganic carbon and nitrate could be effectively manipulated to enhance the production of astaxanthin by both microalgae studied.
    Matched MeSH terms: Xanthophylls/biosynthesis; Xanthophylls/chemistry
  14. Anarjan N, Tan CP, Ling TC, Lye KL, Malmiri HJ, Nehdi IA, et al.
    J Agric Food Chem, 2011 Aug 24;59(16):8733-41.
    PMID: 21726079 DOI: 10.1021/jf201314u
    A simplex centroid mixture design was used to study the interactions between two chosen solvents, dichloromethane (DCM) and acetone (ACT), as organic-phase components in the formation and physicochemical characterization and cellular uptake of astaxanthin nanodispersions produced using precipitation and condensation processes. Full cubic or quadratic regression models with acceptable determination coefficients were obtained for all of the studied responses. Multiple-response optimization predicted that the organic phase with 38% (w/w) DCM and 62% (w/w) ACT yielded astaxanthin nanodispersions with the minimum particle size (106 nm), polydispersity index (0.191), and total astaxanthin loss (12.7%, w/w) and the maximum cellular uptake (2981 fmol/cell). Astaxanthin cellular uptake from the produced nanodispersions also showed a good correlation with their particle size distributions and astaxanthin trans/cis isomerization ratios. The absence of significant (p > 0.05) differences between the experimental and predicted values of the response variables confirmed the adequacy of the fitted models.
    Matched MeSH terms: Xanthophylls/metabolism; Xanthophylls/chemistry
  15. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, et al.
    J Biotechnol, 2017 Jan 10;241:175-183.
    PMID: 27914891 DOI: 10.1016/j.jbiotec.2016.11.026
    Natural antioxidants from sustainable sources are favoured to accommodate worldwide antioxidant demand. In addition to bioprospecting for natural and sustainable antioxidant sources, this study aimed to investigate the relationship between the bioactives (i.e. carotenoid and phenolic acids) and the antioxidant capacities in fucoxanthin-producing algae. Total carotenoid, phenolic acid, fucoxanthin contents and fatty acid profile of six species of algae (five microalgae and one macroalga) were quantified followed by bioactivity evaluation using four antioxidant assays. Chaetoceros calcitrans and Isochrysis galbana displayed the highest antioxidant activity, followed by Odontella sinensis and Skeletonema costatum which showed moderate bioactivities. Phaeodactylum tricornutum and Saccharina japonica exhibited the least antioxidant activities amongst the algae species examined. Pearson correlation and multiple linear regression showed that both carotenoids and phenolic acids were significantly correlated (p<0.05) with the antioxidant activities, indicating the influence of these bioactives on the algal antioxidant capacities.
    Matched MeSH terms: Xanthophylls/metabolism*; Xanthophylls/chemistry
  16. Irna C, Jaswir I, Othman R, Jimat DN
    J Diet Suppl, 2018 Nov 02;15(6):805-813.
    PMID: 29185824 DOI: 10.1080/19390211.2017.1387885
    Astaxanthin is one of the main carotenoid pigments. It has beneficial effects on the immune system of the human body due to its powerful antioxidant properties. The application of this bioactive compound can be found to be significant in the food, pharmaceutical, and cosmetics industries. The aim of this research was to investigate astaxanthin yield from six species of Malaysian shrimp carapace. Six types of shrimp species-Parapenaeopsis sculptili, Metapenaeus lysianassa, Macrobrachium rosenbergii, Metapenaeopsis hardwickii, Penaeus merguiensis, and Penaeus monodon-were used to investigate total carotenoid content and astaxanthin yield. The investigation was carried out using chemical extraction and high-pressure processing (HPP) methods at 210 MPa, for a period of 10 min with a solvent mixture of acetone and methanol (7:3, v/v). HPP was proven to have a significant impact in increasing the total carotenoid content and astaxanthin yield. The highest total carotenoid content and astaxanthin yield is shown to be contained in the Penaeus monodon species. Total carotenoid was increased from 46.95 µg/ml using chemical extraction to 68.26 µg/ml using HPP; yield of astaxanthin was increased from 29.44 µg/gdw using chemical extraction to 59.9744 µg/gdw using HPP. Therefore, comparison between the HPP and chemical extraction methods showed that HPP is more advantageous with higher astaxanthin yield, higher quality, and shorter extraction time.
    Matched MeSH terms: Xanthophylls/analysis; Xanthophylls/isolation & purification
  17. Chu WL, Phang SM
    Mar Drugs, 2016 Dec 07;14(12).
    PMID: 27941599 DOI: 10.3390/md14120222
    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
    Matched MeSH terms: Xanthophylls/pharmacology; Xanthophylls/chemistry
  18. Agatonovic-Kustrin S, Kustrin E, Angove MJ, Morton DW
    J Chromatogr A, 2018 May 18;1550:57-62.
    PMID: 29615323 DOI: 10.1016/j.chroma.2018.03.054
    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity.
    Matched MeSH terms: Xanthophylls
  19. Tachihana S, Nagao N, Katayama T, Hirahara M, Yusoff FM, Banerjee S, et al.
    Front Bioeng Biotechnol, 2020;8:602721.
    PMID: 33363132 DOI: 10.3389/fbioe.2020.602721
    Significantly high eicosapentaenoic acid (EPA) and fucoxanthin contents with high production rate were achieved in semi continuous culture of marine diatom. Effects of dilution rate on the production of biomass and high value biocompounds such as EPA and fucoxanthin were evaluated in semi-continuous cultures of Chaetoceros gracilis under high light condition. Cellular dry weight increased at lower dilution rate and higher light intensity conditions, and cell size strongly affected EPA and fucoxanthin contents. The smaller microalgae cells showed significantly higher (p < 0.05) value of 17.1 mg g-dw-1 fucoxanthin and 41.5% EPA content per total fatty acid compared to those observed in the larger cells. Chaetoceros gracilis can accumulate relatively higher EPA and fucoxanthin than those reported previously. In addition, maintenance of small cell size by supplying sufficient nutrients and light energy can be the key for the increase production of valuable biocompounds in C. gracilis.
    Matched MeSH terms: Xanthophylls
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links