Displaying all 15 publications

Abstract:
Sort:
  1. Soon G, Pingguan-Murphy B, Akbar SA
    J Mech Behav Biomed Mater, 2017 04;68:26-31.
    PMID: 28135639 DOI: 10.1016/j.jmbbm.2017.01.028
    This study utilizes the technique of self-assembly to fabricate arrays of nanoislands on (001)-oriented yttria-stabilized zirconia single crystal substrates with miscut of 10° toward <110> direction. These self-assembled nanostructures were annealed at 1100°C for 5h upon doping with 10mol% gadolinium-doped ceria (GDC) by powder-suspension based method. X-Ray diffraction result showed that the miscut substrate after doping GDC was in the cubic phase. Energy dispersive X-ray (EDX) illustrates that the nanopatterned material contains all the elements from the GDC source and yttria-stabilized zirconia (YSZ) substrate. It also demonstrates a higher surface roughness and a more hydrophilic surface. The nanostructured materials were subsequently used for an in vitro study using a human fetal osteoblastic cell line (hFOB). An improved spreading, enhanced cell proliferation and up-regulated alkaline phosphatase activity (ALP) were observed on the nanopatterned substrates compared to the control substrates. Calcium deposits, which were stained positively by Alizarin Red S, appeared to be more abundant on the nanopatterned surfaces on day 7. The overall findings suggest that post fabrication treatment with surface modification such as creating a nanostructure (e.g. nanopatterns) can improve biocompatibility.
    Matched MeSH terms: Zirconium/chemistry*
  2. Hassan NS, Jalil AA, Khusnun NF, Bahari MB, Hussain I, Firmansyah ML, et al.
    J Environ Manage, 2023 Feb 01;327:116869.
    PMID: 36455446 DOI: 10.1016/j.jenvman.2022.116869
    Photocatalytic degradation is a valuable direction for eliminating organic pollutants in the environment because of its exceptional catalytic activity and low energy requirements. As one of the prospective photocatalysts, zirconium dioxide (ZrO2) is a promising candidate for photoactivity due to its favorable redox potential and higher chemical stability. ZrO2 has a high rate of electron-hole recombination and poor light-harvesting capabilities. Still, modification has demonstrated enhancements, especially extra-modification, and is therefore worthy of investigation. This present review provides a comprehensive overview of the extra-modifications of ZrO2 for enhanced photocatalytic performance, including coupling with other semiconductors, doping with metal, non-metal, and co-doping with metal and non-metal. The extra-modified ZrO2 showed superior performance in degrading the organic pollutant, particularly dyes and phenolic compounds. Interestingly, this review also briefly highlighted the probable mechanisms of the extra-modification of ZrO2 such as p-n heterojunction, type II heterojunction, and Z-scheme heterojunction. The latter heterojunction with excellent electron-hole space separation improved the photoactivity. Extensive research on ZrO2's photocatalytic potential is presented, including the removal of heavy metals, the redox of heavy metals and organic pollutants, and the evolution of hydrogen. Modified ZrO2's photocatalytic effectiveness depends on its band position, oxygen vacancy concentration, and metal defect sites. The opportunities and future problems of the extra-modified ZrO2 photocatalyst are also discussed. This review aims to share knowledge regarding extra-modified ZrO2 photocatalysts and inspire new environmental remediation applications.
    Matched MeSH terms: Zirconium/chemistry
  3. Yasin SM, Ibrahim S, Johan MR
    ScientificWorldJournal, 2014;2014:547076.
    PMID: 25133244 DOI: 10.1155/2014/547076
    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.
    Matched MeSH terms: Zirconium/chemistry*
  4. Rahman NJA, Ramli A, Jumbri K, Uemura Y
    Sci Rep, 2019 11 07;9(1):16223.
    PMID: 31700157 DOI: 10.1038/s41598-019-52771-9
    Bifunctional heterogeneous catalysts have a great potential to overcome the shortcomings of homogeneous and enzymatic catalysts and simplify the biodiesel production processes using low-grade, high-free-fatty-acid feedstock. In this study, we developed ZrO2-based bifunctional heterogeneous catalysts for simultaneous esterification and transesterification of microalgae to biodiesel. To avoid the disadvantage of the low surface area of ZrO2, the catalysts were prepared via a surfactant-assisted sol-gel method, followed by hydrothermal treatments. The response surface methodology central composite design was employed to investigate various factors, like the surfactant/Zr molar ratio, pH, aging time, and temperature on the ZrO2 surface area. The data were statistically analyzed to predict the optimal combination of factors, and further experiments were conducted for verification. Bi2O3 was supported on ZrO2 via the incipient wetness impregnation method. The catalysts were characterized by a variety of techniques, which disclosed that the surfactant-assisted ZrO2 nanoparticles possess higher surface area, better acid-base properties, and well-formed pore structures than bare ZrO2. The highest yield of fatty acid methyl esters (73.21%) was achieved using Bi2O3/ZrO2(CTAB), and the catalytic activity of the developed catalysts was linearly correlated with the total densities of the acidic and basic sites. The mechanism of the simultaneous reactions was also discussed.
    Matched MeSH terms: Zirconium/chemistry*
  5. Ho TK, Satterthwaite JD, Silikas N
    Dent Mater, 2018 02;34(2):e15-e24.
    PMID: 29175160 DOI: 10.1016/j.dental.2017.11.014
    OBJECTIVE: To assess the change in surface roughness of nanohybrid resin composite (Tetric EvoCeram) after antagonist wear against monolithic zirconia and lithium disilicate ceramics through a simulated chewing test using a three-dimensional (3D) profilometer.

    METHODS: A total of 40 Tetric EvoCeram™ resin composite specimens against either a Lava™ Plus zirconia antagonist (n=20) or IPS e.max Press lithium disilicate antagonist (n=20) were prepared for the study. The surface roughness profiles of each resin composite before and after an in-vitro simulated chewing test were analysed using a 3D profilometer and Talymap software. After the simulated chewing, the surface profiles of representative Tetric EvoCeram specimens from each group were analysed using scanning electron microscopy. Independent t-test and paired t-test were used for statistical analysis.

    RESULTS: For both lithium disilicate and zirconia groups, all surface roughness parameters (Ra, Rt, Sa, Sq,) of Tetric EvoCeram were significantly higher post-chewing compared to pre-chewing (p<0.05); the post-chewing surface roughness parameters of Tetric EvoCeram for the lithium disilicate group were significantly higher (p<0.05) than in the zirconia group.

    SIGNIFICANCE: This chewing simulation test showed that Tetric EvoCeram composites exhibited a rougher surface when opposing lithium disilicate ceramic compared to opposing zirconia ceramic.

    Matched MeSH terms: Zirconium/chemistry*
  6. Fan MS, Abdullah AZ, Bhatia S
    ChemSusChem, 2011 Nov 18;4(11):1643-53.
    PMID: 22191096
    A series of bimetallic catalysts containing nickel supported over MgO-ZrO2 were tested for activity in the dry reforming of carbon dioxide. A nickel-cobalt bimetallic catalyst gave the best performance in terms of conversion and coke resistance from a range of Ni-X bimetallic catalysts, X=Ca, K, Ba, La, and Ce. The nitrogen-adsorption and hydrogen-chemisorption studies showed the Ni-Co bimetallic supported catalyst to have good surface area with high metal dispersion. This contributed to the high catalytic activity, in terms of conversion activity and stability of the catalyst, at an equimolar methane/carbon dioxide feed ratio. The kinetics of methane dry reforming are studied in a fixed-bed reactor over an Ni-Co bimetallic catalyst in the temperature range 700-800 °C by varying the partial pressures of CH4 and CO2. The experimental data were analyzed based on the proposed reaction mechanism using the Langmuir-Hinshelwood kinetic model. The activation energies for methane and carbon dioxide consumption were estimated at 52.9 and 48.1 kJ mol(-1), respectively. The lower value of CO2 activation energy compared to the activation energy of CH4 indicated a higher reaction rate of CO2, which owes to the strong basicity of nanocrystalline support, MgO-ZrO2.
    Matched MeSH terms: Zirconium/chemistry
  7. Yee KF, Lee KT, Ceccato R, Abdullah AZ
    Bioresour Technol, 2011 Mar;102(5):4285-9.
    PMID: 21232947 DOI: 10.1016/j.biortech.2010.12.048
    This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751.
    Matched MeSH terms: Zirconium/chemistry*
  8. Sanagi MM, See HH, Ibrahim WA, Naim AA
    J Chromatogr A, 2004 Dec 03;1059(1-2):95-101.
    PMID: 15628129
    High temperature liquid chromatography using water-rich and superheated water eluent is evaluated as a new approach for the separation of selected triazole fungicides, hexaconazole, tebuconazole, propiconazole, and difenoconazole. Using a polybutadiene-coated zirconia column at temperatures of 100-150 degrees C, clear separations were achieved when 100% purified water was utilized as organic-free eluent. Excellent limits of detection down to pg level were obtained for the separation of the triazole fungicides under optimum conditions. Van't Hoff plots for the separations were linear suggesting that no changes occurred in the retention mechanism over the temperature range studied.
    Matched MeSH terms: Zirconium/chemistry*
  9. Alhassan FH, Rashid U, Taufiq-Yap YH
    J Oleo Sci, 2015;64(5):505-14.
    PMID: 25843280 DOI: 10.5650/jos.ess14228
    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.
    Matched MeSH terms: Zirconium/chemistry*
  10. Caglar I, Ates SM, Boztoprak Y, Aslan YU, Duymus ZY
    Niger J Clin Pract, 2018 Aug;21(8):1000-1007.
    PMID: 30074001 DOI: 10.4103/njcp.njcp_300_17
    Objective: The aim of this study was to investigate the different surface treatments on the bond strength of self-adhesive resin cement to high-strength ceramic.

    Materials and Methods: Ninety aluminum oxide ceramic (Turkom-Ceramic Sdn. Bhd., Kuala Lumpur, Malaysia) specimens were produced and divided into nine groups to receive the following surface treatments: control group, no treatment (Group C), sandblasting (Group B), silica coating (Group S), erbium: yttrium-aluminum-garnet (Er:YAG) laser irradiation at 150 mJ 10 Hz (Group L1), Er:YAG laser irradiation at 300 mJ 10 Hz (Group L2), sandblasting + L1 (Group BL1), sandblasting + L2 (Group BL2), silica coating + L1 (Group SL1), and silica coating + L2 (Group SL2). After surface treatments, surface roughness (SR) values were measured and surface topography was evaluated. Resin cement was applied on the specimen surface, and shear bond strength (SBS) tests were performed. Data were statistically analyzed using one-way ANOVA and Tukey's multiple comparisons at a significance level of P < 0.05.

    Results: Group S, SL1, and SL2 showed significantly increased SR values compared to the control group (P < 0.05); therefore, no significant differences were found among the SR values of Groups B, BL1, BL2, L1, and L2 and the control group (P > 0.05). Group S showed the highest SBS values, whereas the control group showed the lowest SBS values.

    Conclusion: Silica coating is the most effective method for resin bonding of high strength ceramic, but Er:YAG laser application decreased the effectiveness.

    Matched MeSH terms: Zirconium/chemistry*
  11. Abdullah AM, Mohamad D, Rahim TNAT, Akil HM, Rajion ZA
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:719-725.
    PMID: 30889745 DOI: 10.1016/j.msec.2019.02.007
    This study reports the influence of ZrO2/β-TCP hybridization on the thermal, mechanical, and physical properties of polyamide 12 composites to be suited for bone replacement. Amount of 15 wt% of nano-ZrO2 along with 5,10,15,20 and 25 wt% of micro-β-TCP was compounded with polyamide 12 via a twin-screw extruder. The hybrid ZrO2/β-TCP filled polyamide 12 exhibited higher thermal, mechanical and physical properties in comparison to unfilled polyamide 12 at certain filler loading; which is attributed to the homogenous dispersion of ZrO2/β-TCP fillers particle in polyamide 12 matrix. The hybrid ZrO2/β-TCP filled PA 12 demonstrated an increment of tensile strength by up to 1%, tensile modulus of 38%, flexural strength of 15%, flexural modulus of 45%, and surface roughness value of 93%, as compared to unfilled PA 12. With enhanced thermal, mechanical and physical properties, the newly developed hybrid ZrO2/β-TCP filled PA 12 could be potentially utilized for bone replacement.
    Matched MeSH terms: Zirconium/chemistry
  12. Rad MA, Tijjani AS, Ahmad MR, Auwal SM
    Sensors (Basel), 2016 Dec 23;17(1).
    PMID: 28025571 DOI: 10.3390/s17010014
    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m-1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N-1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m-1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.
    Matched MeSH terms: Zirconium/chemistry*
  13. Askari E, Mehrali M, Metselaar IH, Kadri NA, Rahman MM
    J Mech Behav Biomed Mater, 2012 Aug;12:144-50.
    PMID: 22732480 DOI: 10.1016/j.jmbbm.2012.02.029
    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress.
    Matched MeSH terms: Zirconium/chemistry*
  14. Abdullah AM, Rahim TNAT, Hamad WNFW, Mohamad D, Akil HM, Rajion ZA
    Dent Mater, 2018 11;34(11):e309-e316.
    PMID: 30268678 DOI: 10.1016/j.dental.2018.09.006
    OBJECTIVE: To compare the mechanical and biological properties of newly developed hybrid ceramics filled and unfilled polyamide 12 (PA 12) for craniofacial reconstruction via a fused deposition modelling (FDM) framework.

    METHODS: 15wt% of zirconia (ZrO2) as well as 30, 35, and 40wt% of beta-tricalcium phosphate (β-TCP) were compounded with PA 12, followed by the fabrication of filament feedstocks using a single screw extruder. The fabricated filament feedstocks were used to print the impact specimens. The melt flow rate, tensile properties of fabricated filament feedstocks, and 3D printed impact properties of the specimens were assessed using melt flow indexer, universal testing machine, and Izod pendulum tester, respectively. The microstructure of selected filament feedstocks and broken impact specimens were analysed using a field emission scanning electron microscope and universal testing machine. Human periodontal ligament fibroblast cells (HPdLF) were used to evaluate the cytotoxicity of the materials by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid) (MTT) assay.

    RESULTS: Hybrid ceramics filled PA 12 indicated sufficient flowability for FDM 3D printing. The tensile strength of hybrid ceramics filled PA 12 filament feedstocks slightly reduced as compared to unfilled PA 12. However, the tensile modulus and impact strength of hybrid ceramics filled PA 12 increased by 8%-31% and 98%-181%, respectively. A significant increase was also detected in the cell viability of the developed composites at concentrations of 12.5, 25, 50 and 100mg/ml.

    SIGNIFICANCE: The newly developed hybrid ceramics filled PA 12 filament feedstock with improved properties is suitable for an FDM-based 3D printer, which enables the creation of patient-specific craniofacial implant at a lower cost to serve low-income patients.

    Matched MeSH terms: Zirconium/chemistry
  15. Al-Fahdawi MQ, Rasedee A, Al-Qubaisi MS, Alhassan FH, Rosli R, El Zowalaty ME, et al.
    Int J Nanomedicine, 2015;10:5739-50.
    PMID: 26425082 DOI: 10.2147/IJN.S82586
    Iron-manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner-Emmett-Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron-manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron-manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 μg/mL to 500 μg/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron-manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions.
    Matched MeSH terms: Zirconium/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links