Displaying all 5 publications

Abstract:
Sort:
  1. Borges JLC, Sousa da Silva M, Ward RJ, Diemer KM, Yeap SS, Lewiecki EM
    J Clin Densitom, 2019 07 10;22(4):484-488.
    PMID: 31375350 DOI: 10.1016/j.jocd.2019.07.005
    Vertebral fracture (VF) is the most common type of osteoporotic fracture. VFs are associated with a decline in quality of life and high morbidity and mortality. The presence of a VF is a significant risk factor for developing another fracture; however, most VFs are not clinically recognized and diagnosed. Vertebral fracture assessment by dual-energy X-ray absorptiometry is a low cost, low radiation, convenient, and reliable method to identify VFs. The finding of a previously unrecognized VF may change the assessment of fracture risk, diagnostic classification, and treatment strategies. Vertebral fracture assessment or radiographic lateral spine imaging should be repeated in patients with continued high risk for fracture (e.g., historical height loss >4 cm [>1.5 inches], self-reported but undocumented vertebral fracture, or glucocorticoid therapy equivalent to ≥5 mg of prednisone or equivalent per day for greater than or equal to 3 months).
    Matched MeSH terms: Absorptiometry, Photon/standards*
  2. Morse LR, Biering-Soerensen F, Carbone LD, Cervinka T, Cirnigliaro CM, Johnston TE, et al.
    J Clin Densitom, 2019 08 03;22(4):554-566.
    PMID: 31501005 DOI: 10.1016/j.jocd.2019.07.012
    Spinal cord injury (SCI) causes rapid osteoporosis that is most severe below the level of injury. More than half of those with motor complete SCI will experience an osteoporotic fracture at some point following their injury, with most fractures occurring at the distal femur and proximal tibia. These fractures have devastating consequences, including delayed union or nonunion, cellulitis, skin breakdown, lower extremity amputation, and premature death. Maintaining skeletal integrity and preventing fractures is imperative following SCI to fully benefit from future advances in paralysis cure research and robotic-exoskeletons, brain computer interfaces and other evolving technologies. Clinical care has been previously limited by the lack of consensus derived guidelines or standards regarding dual-energy X-ray absorptiometry-based diagnosis of osteoporosis, fracture risk prediction, or monitoring response to therapies. The International Society of Clinical Densitometry convened a task force to establish Official Positions for bone density assessment by dual-energy X-ray absorptiometry in individuals with SCI of traumatic or nontraumatic etiology. This task force conducted a series of systematic reviews to guide the development of evidence-based position statements that were reviewed by an expert panel at the 2019 Position Development Conference in Kuala Lumpur, Malaysia. The resulting the International Society of Clinical Densitometry Official Positions are intended to inform clinical care and guide the diagnosis of osteoporosis as well as fracture risk management of osteoporosis following SCI.
    Matched MeSH terms: Absorptiometry, Photon/standards*
  3. Anderson PA, Morgan SL, Krueger D, Zapalowski C, Tanner B, Jeray KJ, et al.
    J Clin Densitom, 2019 08 16;22(4):517-543.
    PMID: 31519473 DOI: 10.1016/j.jocd.2019.07.013
    This position development conference (PDC) Task Force examined the assessment of bone status in orthopedic surgery patients. Key questions included which orthopedic surgery patients should be evaluated for poor bone health prior to surgery and which subsets of patients are at high risk for poor bone health and adverse outcomes. Second, the reliability and validity of using bone densitometry techniques and measurement of specific geometries around the hip and knee before and after arthroplasty was determined. Finally, the use of computed tomography (CT) attenuation coefficients (Hounsfield units) to estimate bone quality at anatomic locations where orthopedic surgery is performed including femur, tibia, shoulder, wrist, and ankle were reviewed. The literature review identified 665 articles of which 198 met inclusion exclusion criteria and were selected based on reporting of methodology, reliability, or validity results. We recommend that the orthopedic surgeon be aware of established ISCD guidelines for determining who should have additional screening for osteoporosis. Patients with inflammatory arthritis, chronic corticosteroid use, chronic renal disease, and those with history of fracture after age 50 are at high risk of osteoporosis and adverse events from surgery and should have dual energy X-ray absorptiometry (DXA) screening before surgery. In addition to standard DXA, bone mineral density (BMD) measurement along the femur and proximal tibia is reliable and valid around implants and can provide valuable information regarding bone remodeling and identification of loosening. Attention to positioning, selection of regions of interest, and use of special techniques and software is required. Plain radiographs and CT provide simple, reliable methods to classify the shape of the proximal femur and to predict osteoporosis; these include the Dorr Classification, Cortical Index, and critical thickness. Correlation of these indices to central BMD is moderate to good. Many patients undergoing orthopedic surgery have had preoperative CT which can be utilized to assess regional quality of bone. The simplest method available on most picture archiving and communications systems is to simply measure a regions of interest and determine the mean Hounsfield units. This method has excellent reliability throughout the skeleton and has moderate correlation to DXA based on BMD. The prediction of outcome and correlation to mechanical strength of fixation of a screw or implant is unknown.
    Matched MeSH terms: Absorptiometry, Photon/standards*
  4. Jankowski LG, Warner S, Gaither K, Lenchik L, Fan B, Lu Y, et al.
    J Clin Densitom, 2019 09 07;22(4):472-483.
    PMID: 31558404 DOI: 10.1016/j.jocd.2019.09.001
    In preparation for the International Society for Clinical Densitometry Position Development Conference (PDC) 2019 in Kuala Lumpur, Malaysia, a cross-calibration and precision task force was assembled and tasked to review the literature, summarize the findings, and generate positions to answer 4 related questions provided by the PDC Steering Committee, which expand upon the current ISCD official positions on these subjects. (1) How should a provider with multiple dual-energy X-ray absorptiometry (DXA) scanners of the same make and model calculate least significant change (LSC)? (2) How should a provider with multiple DXA systems with the same manufacturer but different models calculate LSC? (3) How should a provider with multiple DXA systems from different manufacturers and models calculate LSC? (4) Are there specific phantom procedures that one can use to provide trustworthy in vitro cross calibration for same models, different models, and different makes? Based on task force deliberations and the resulting systematic literature reviews, 3 new positions were developed to address these more complex scenarios not addressed by current official positions on single scanner cross calibration and LSC. These new positions provide appropriate guidance to large multiple DXA scanner providers wishing to offer patients flexibility and convenience, and clearly define good clinical practice requirements to that end.
    Matched MeSH terms: Absorptiometry, Photon/standards*
  5. Shuhart CR, Yeap SS, Anderson PA, Jankowski LG, Lewiecki EM, Morse LR, et al.
    J Clin Densitom, 2019 07 05;22(4):453-471.
    PMID: 31400968 DOI: 10.1016/j.jocd.2019.07.001
    To answer important questions in the fields of monitoring with densitometry, dual-energy X-ray absorptiometry machine cross-calibration, monitoring, spinal cord injury, periprosthetic and orthopedic bone health, transgender medicine, and pediatric bone health, the International Society for Clinical Densitometry (ISCD) held a Position Development Conference from March 20 to 23, 2019. Potential topics requiring guidance were solicited from ISCD members in 2017. Following that, a steering committee selected, prioritized, and grouped topics into Task Forces. Chairs for each Task Force were appointed and the members were co-opted from suggestions by the Steering Committee and Task Force Chairs. The Task Forces developed key questions, performed literature searches, and came up with proposed initial positions with substantiating draft publications, with support from the Steering Committee. An invited Panel of Experts first performed a review of draft positions using a modified RAND Appropriateness Method with voting for appropriateness. Draft positions deemed appropriate were further edited and presented at the Position Development Conference meeting in an open forum. A second round of voting occurred after discussions to approve or reject the positions. Finally, a face-to-face closed session with experts and Task Force Chairs, and subsequent electronic follow-up resulted in 34 Official Positions of the ISCD approved by the ISCD Board on May 28, 2019. The Official Positions and the supporting evidence were submitted for publication on July 1, 2019. This paper provides a summary of the all the ISCD Adult and Pediatric Official Positions, with the new 2019 positions highlighted in bold.
    Matched MeSH terms: Absorptiometry, Photon/standards*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links