Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Azizan EA, Brown MJ
    Curr Opin Endocrinol Diabetes Obes, 2016 06;23(3):209-17.
    PMID: 26992195 DOI: 10.1097/MED.0000000000000255
    PURPOSE OF REVIEW: Aldosterone regulation in the adrenal plays an important role in blood pressure. The commonest curable cause of hypertension is primary aldosteronism. Recently, mutations in novel genes have been identified to cause primary aldosteronism. Elucidating the mechanism of action of these genetic abnormalities may help understand the cause of primary aldosteronism and the physiological regulation of aldosterone in the zona glomerulosa.

    RECENT FINDINGS: KCNJ5, ATP1A1, ATP2B3, CACNA1D, CTNNB1, and CACNA1H mutations are causal of primary aldosteronism. ARMC5 may cause bilateral lesions resulting in primary aldosteronism.LGR5, DACH1, and neuron-specific proteins are highly expressed in the zona glomerulosa and regulate aldosterone production.

    SUMMARY: Most mutations causing primary aldosteronism are in genes encoding cation channels or pumps, leading to increased calcium influx. Genotype-phenotype analyses identified two broad subtypes of aldosterone-producing adenomas (APAs), zona fasciculata-like and zona glomerulosa-like, and the likelihood of under-diagnosed zona glomerulosa-like APAs because of small size. Zona fasciculata-like APAs are only associated with KCNJ5 mutations, whereas zona glomerulosa-like APAs are associated with mutations in ATPase pumps, CACNA1D, and CTNNB1. The frequency of APAs, and the multiplicity of causal mutations, suggests a pre-existing drive for these mutations. We speculate that these mutations are selected for protecting against tonic inhibition of aldosterone in human zona glomerulosa, which express genes inhibiting aldosterone production.

    Matched MeSH terms: Aldosterone/metabolism*
  2. Azizan EAB, Drake WM, Brown MJ
    Nat Rev Nephrol, 2023 Dec;19(12):788-806.
    PMID: 37612380 DOI: 10.1038/s41581-023-00753-6
    Primary aldosteronism is the most common single cause of hypertension and is potentially curable when only one adrenal gland is the culprit. The importance of primary aldosteronism to public health derives from its high prevalence but huge under-diagnosis (estimated to be <1% of all affected individuals), despite the consequences of poor blood pressure control by conventional therapy and enhanced cardiovascular risk. This state of affairs is attributable to the fact that the tools used for diagnosis or treatment are still those that originated in the 1970-1990s. Conversely, molecular discoveries have transformed our understanding of adrenal physiology and pathology. Many molecules and processes associated with constant adrenocortical renewal and interzonal metamorphosis also feature in aldosterone-producing adenomas and aldosterone-producing micronodules. The adrenal gland has one of the most significant rates of non-silent somatic mutations, with frequent selection of those driving autonomous aldosterone production, and distinct clinical presentations and outcomes for most genotypes. The disappearance of aldosterone synthesis and cells from most of the adult human zona glomerulosa is the likely driver of the mutational success that causes aldosterone-producing adenomas, but insights into the pathways that lead to constitutive aldosterone production and cell survival may open up opportunities for novel therapies.
    Matched MeSH terms: Aldosterone/metabolism
  3. Huang WC, Lin YH, Wu VC, Chen CH, Siddique S, Chia YC, et al.
    J Clin Hypertens (Greenwich), 2022 Sep;24(9):1194-1203.
    PMID: 36196469 DOI: 10.1111/jch.14558
    Arterial hypertension is a major risk factor for cardiovascular disease. The prevalence of primary aldosteronism (PA) ranges from 5% to 10% in the general hypertensive population and is regarded as one of the most common causes of secondary hypertension. There are two major causes of PA: bilateral adrenal hyperplasia and aldosterone-producing adenoma. The diagnosis of PA comprises screening, confirmatory testing, and subtype differentiation. The Endocrine Society Practice Guidelines for the diagnosis and treatment of PA recommends screening of patients at an increased risk of PA. These categories include patients with stage 2 and 3 hypertension, drug-resistant hypertension, hypertensive with spontaneous or diuretic-induced hypokalemia, hypertension with adrenal incidentaloma, hypertensive with a family history of early onset hypertension or cerebrovascular accident at a young age, and all hypertensive first-degree relatives of patients with PA. Recently, several studies have linked PA with obstructive sleep apnea and atrial fibrillation unexplained by structural heart defects and/or other conditions known to cause the arrhythmia, which may be partly responsible for the higher rates of cardiovascular and cerebrovascular accidents in patients with PA. The aim of this review is to discuss which patients should be screened for PA, focusing not only on well-established guidelines but also on additional groups of patients with a potentially higher prevalence of PA, as has been reported in recent research.
    Matched MeSH terms: Aldosterone
  4. Loh HH, Sukor N
    J Hum Hypertens, 2020 01;34(1):5-15.
    PMID: 31822780 DOI: 10.1038/s41371-019-0294-8
    Primary aldosteronism (PA), the most common cause of secondary hypertension, is a well-recognized condition that can lead to cardiovascular and renal complications. PA is frequently left undiagnosed and untreated, leading to aldosterone-specific morbidity and mortality. In this review we highlight the evidence linking PA with other conditions such as (i) diabetes mellitus, (ii) obstructive sleep apnea, and (iii) bone health, along with clinical implications and proposed underlying mechanisms.
    Matched MeSH terms: Aldosterone/metabolism*
  5. Tan YJD, Brooks DL, Wong KYH, Huang Y, Romero JR, Williams JS, et al.
    J Endocrinol, 2023 Jan 01;256(1).
    PMID: 36327153 DOI: 10.1530/JOE-22-0141
    Biologic sex influences the development of cardiovascular disease and modifies aldosterone (ALDO) and blood pressure (BP) phenotypes: females secrete more ALDO, and their adrenal glomerulosa cell is more sensitive to stimulation. Lysine-specific demethylase 1 (LSD1) variants in Africans and LSD1 deficiency in mice are associated with BP and/or ALDO phenotypes. This study, in 18- and 40-week-old wild type (WT) and LSD1+/- mice, was designed to determine whether (1) sex modifies ALDO biosynthetic enzymes; (2) LSD1 deficiency disrupts the effect of sex on these enzymes; (3) within each genotype, there is a positive relationship between ALDO biosynthesis (proximate phenotype), plasma ALDO (intermediate phenotype) and BP levels (distant phenotype); and (4) sex and LSD1 genotype interact on these phenotypes. In WT mice, female sex increases the expression of early enzymes in ALDO biosynthesis but not ALDO levels or systolic blood pressure (SBP). However, enzyme expressions are shifted downward in LSD1+/- females vs males, so that early enzyme levels are similar but the late enzymes are substantially lower. In both age groups, LSD1 deficiency modifies the adrenal enzyme expressions, circulating ALDO levels, and SBP in a sex-specific manner. Finally, significant sex/LSD1 genotype interactions modulate the three phenotypes in mice. In conclusion, biologic sex in mice interacts with LSD1 deficiency to modify several phenotypes: (1) proximal (ALDO biosynthetic enzymes); (2) intermediate (circulating ALDO); and (3) distant (SBP). These results provide entry to better understand the roles of biological sex and LSD1 in (1) hypertension heterogeneity and (2) providing more personalized treatment.
    Matched MeSH terms: Aldosterone/metabolism
  6. Zhou J, Lam B, Neogi S, Yeo G, Azizan E, Brown M
    J Hypertens, 2016 Sep;34 Suppl 1 - ISH 2016 Abstract Book:e40.
    PMID: 27753883
    Primary aldosteronism (PA) is the most common type of secondary hypertension occurring in ∼10% of hypertensive patients. Up to 50% of PA is caused by aldosterone-producing adenomas (APA). This study is to identify the potential biological processes and canonical pathways involved with aldosterone regulation, APA formation, or APA and ZG cell functions.
    Matched MeSH terms: Aldosterone
  7. Ismail NA, Kamaruddin NA, Azhar Shah S, Sukor N
    Clin Endocrinol (Oxf), 2020 06;92(6):509-517.
    PMID: 32073675 DOI: 10.1111/cen.14177
    INTRODUCTION: Primary aldosteronism (PA) contributed to the cardiovascular disease and metabolic alterations independent of the blood pressure level. Evidence exists that aldosterone excess also affects calcium and mineral homeostasis. PA subjects have been shown to have greater prevalence of vitamin D deficiency. However, the impact of vitamin D treatment in this population has never been assessed.

    OBJECTIVE: This study aimed to evaluate the effect of vitamin D treatment on clinical and biochemical outcomes of PA patients.

    METHODS: Two hundred forty hypertensive subjects were screened, 31 had positive ARR, and 17 patients with newly confirmed PA following positive confirmatory test that has not been subjected for definitive treatment were enrolled. Clinical parameter (blood pressure) and biochemical parameters (renal profile, plasma aldosterone concentration, plasma renin activity, serum calcium, vitamin D, intact parathyroid hormone, 24-hour urinary calcium) were measured at baseline and 3 months of treatment with Bio-D3 capsule. Primary outcomes were the changes in the blood pressure and biochemical parameters.

    RESULTS: About 70% of our PA subjects have low vitamin D levels at baseline. Three months following treatment, there were significant: (a) improvement in 25(OH)D levels; (b) reduction in systolic blood pressure and plasma aldosterone concentration; and (c) improvement in the eGFR. The vitamin D deficient subgroup has the greatest magnitude of the systolic blood pressure reduction following treatment.

    CONCLUSIONS: This study demonstrated significant proportion of PA patients has vitamin D insufficiency. Vitamin D treatment improves these interrelated parameters possibly suggesting interplay between vitamin D, aldosterone, renal function and the blood pressure.

    Matched MeSH terms: Aldosterone
  8. Naruse M, Murakami M, Katabami T, Kocjan T, Parasiliti-Caprino M, Quinkler M, et al.
    Eur J Endocrinol, 2023 Jan 10;188(1).
    PMID: 36726325 DOI: 10.1093/ejendo/lvac002
    OBJECTIVE: Primary aldosteronism (PA) is one of the most frequent causes of secondary hypertension. Although clinical practice guidelines recommend a diagnostic process, details of the steps remain incompletely standardized.

    DESIGN: In the present SCOT-PA survey, we have investigated the diversity of approaches utilized for each diagnostic step in different expert centers through a survey using Google questionnaires. A total of 33 centers from 3 continents participated.

    RESULTS: We demonstrated a prominent diversity in the conditions of blood sampling, assay methods for aldosterone and renin, and the methods and diagnostic cutoff for screening and confirmatory tests. The most standard measures were modification of antihypertensive medication and sitting posture for blood sampling, measurement of plasma aldosterone concentration (PAC) and active renin concentration by chemiluminescence enzyme immunoassay, a combination of aldosterone-to-renin ratio with PAC as an index for screening, and saline infusion test in a seated position for confirmatory testing. The cutoff values for screening and confirmatory testing showed significant variation among centers.

    CONCLUSIONS: Diversity of the diagnostic steps may lead to an inconsistent diagnosis of PA among centers and limit comparison of evidence for PA between different centers. We expect the impact of this diversity to be most prominent in patients with mild PA. The survey raises 2 issues: the need for standardization of the diagnostic process and revisiting the concept of mild PA. Further standardization of the diagnostic process/criteria will improve the quality of evidence and management of patients with PA.

    Matched MeSH terms: Aldosterone
  9. Balakumar P, Anand-Srivastava MB, Jagadeesh G
    Pharmacol Res, 2017 11;125(Pt A):1-3.
    PMID: 28711403 DOI: 10.1016/j.phrs.2017.07.003
    Matched MeSH terms: Aldosterone/metabolism*
  10. Harvey BJ, Thomas W
    Steroids, 2018 05;133:67-74.
    PMID: 29079406 DOI: 10.1016/j.steroids.2017.10.009
    Aldosterone acts through the mineralocorticoid receptor (MR) to modulate gene expression in target tissues. In the kidney, the principal action of aldosterone is to promote sodium conservation in the distal nephron and so indirectly enhance water conservation under conditions of hypotension. Over the last twenty years the rapid activation of protein kinase signalling cascades by aldosterone has been described in various tissues. This review describes the integration of rapid protein kinase D signalling responses with the non-genomic actions of aldosterone and transcriptional effects of MR activation.
    Matched MeSH terms: Aldosterone/metabolism*
  11. Thomas W, Dooley R, Quinn S, Robles MY, Harvey BJ
    Steroids, 2020 03;155:108553.
    PMID: 31836481 DOI: 10.1016/j.steroids.2019.108553
    Protein kinase D2 (PKD2) is a serine/threonine protein kinase which plays an important role in vesicle fission at the trans-Golgi network (TGN) to coordinate subcellular trafficking with gene expression. We found that in the rat kidney, PKD2 is specifically expressed in collecting duct principal cells predominantly at the apical membrane and with lower basal expression in cytosolic compartments. When rats were maintained on a Na+ depleted diet (<0.87 mmol Na+/kg) to increase plasma aldosterone levels, PKD2 became internalized to a cytoplasmic compartment. Treatment of murine M1 cortical collecting duct (M1-CCD) cells with aldosterone (10 nM) promoted PKD2 co-localization with the trans-Golgi network within 30 min. PKD2 underwent autophosphorylation at Ser876 within 10 min of aldosterone treatment and remained phosphorylated (active) for at least 24 h. A stable PKD2 shRNA knock-down (PKD2 KD) M1-CCD cell line was developed to study the role of PKD2 in epithelial Na+ channel (ENaC) trafficking and transepithelial Na+ transport (SCC) in epithelial monolayers grown in Ussing chambers. The PKD2 KD cells developed transepithelial resistance with kinetics equivalent to wild-type cells, however the transepithelial voltage and Na+ current were significantly elevated in PKD2 knock-down CCD epithelia. The higher basal SCC was due to increased ENaC activity. Aldosterone treatment for 24 h resulted in a decline in ENaC activity in the PKD2 KD cells as opposed to the increase observed in the wild-type cells. The paradoxical inhibition of SCC by aldosterone in PKD2 KD epithelium was attributed to a reduction in ENaC current and lower membrane abundance of ENaC, demonstrating that PKD2 plays a critical tonic role in ENaC trafficking and channel subunit stability. The rapid activation of PKD2 by aldosterone is synergistic with the transcriptional activity of MR and contributes to increased ENaC activity.
    Matched MeSH terms: Aldosterone/blood; Aldosterone/pharmacology*
  12. Zhou J, Lam BY, Neogi SG, Yeo GS, Teo AE, Maniero C, et al.
    J Hypertens, 2016 Sep;34 Suppl 2:e26.
    PMID: 27508643 DOI: 10.1097/01.hjh.0000491398.48468.bf
    Primary aldosteronism (PA) is the most common type of secondary hypertension occurring in ∼10% of hypertensive patients. Up to 50% of PA is caused by aldosterone-producing adenomas (APA). We recently performed a microarray assay using 21 pairs of zona glomerulosa (ZG) and zona fasciculata (ZF), and 14 paired APAs. This study is to identify the potential biological processes and canonical pathways involved with aldosterone regulation, APA formation, or APA and ZG cell functions.
    Matched MeSH terms: Aldosterone
  13. Rafidah HM, Azizi A, Suhaimi H, Noriah MN
    Med J Malaysia, 2008 Mar;63(1):9-16.
    PMID: 18935724 MyJurnal
    Normotensive subjects with family history of hypertension (FHT) have been reported to have increased left ventricular mass index and reduced ventricular compliance. Of interest is whether blood pressure variability (BPV), which has been associated with target organ damage, is then part of this complex inherited syndrome? The objectives of this study are to determine whether there are any significant differences in BPV, arterial compliance and humoral factors in subjects with FHT as compared to controls. Thirty-five subjects with self reported FHT and 35 matched controls underwent 24 hour BP monitoring (BR-102, Schiller Inc. Germany). Arterial compliance was measured using systolic pulse wave tonometry (HDI/Pulsewave Cardiovascular Profiling Instrument, Hypertension Diagnostic Inc. USA). None of the subjects were hypertensive or diabetic. Out of these numbers, 25 subjects with FHT and 26 controls had measurements of plasma catecholamines, plasma renin and serum aldosterone. Catecholamines were assayed with high performance liquid chromatography, while both renin and aldosterone measurements were by radioimmunoassay. Subjects with FHT have higher night time BPV. There was no significant difference in arterial compliances between both groups. There were increased level of norepinephrine (NE) in subjects with FHT but epinephrine (E), renin and aldosterone levels were similar in both groups. There were no correlations between NE and BPV but E was negatively associated with daytime and mean arterial systolic BPV. In conclusion subjects with FHT demonstrated a higher night time BPV and NE level as compared to controls.
    Matched MeSH terms: Aldosterone/blood*
  14. Xie CB, Shaikh LH, Garg S, Tanriver G, Teo AE, Zhou J, et al.
    Sci Rep, 2016 Apr 21;6:24697.
    PMID: 27098837 DOI: 10.1038/srep24697
    Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound 8, we investigated the role of CaV1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over CaV1.3. In H295R cells transfected with wild-type or mutant CaV1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 μM of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 μM). Selective CaV1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of CaV1.3.
    Matched MeSH terms: Aldosterone/metabolism*
  15. Loh SY, Giribabu N, Salleh N
    Steroids, 2017 Dec;128:128-135.
    PMID: 28954214 DOI: 10.1016/j.steroids.2017.09.008
    We hypothesized that testosterone-induced increase in blood pressure involve changes in aldosterone levels and expression of epithelial sodium channel (ENaC) in the kidneys.

    METHODS: Ovariectomized female normotensive Wistar Kyoto (WKY) and Spontaneous hypertensive (SHR) rats were given six weeks treatment with testosterone via subcutaneous silastic implant. The rats were anesthetized and mean arterial pressure (MAP) was measured via direct cannulation of the carotid artery. Animals were sacrificed and kidneys were removed and subjected for α, β and γ-ENaC protein and mRNA expression analyses by Western blotting and Real-time polymerase chain reaction (qPCR), respectively. Distributions of α, β and γ-ENaC proteins in kidneys were observed by immunofluorescence. Plasma testosterone, aldosterone, electrolytes, osmolality, urea and creatinine levels were determined by biochemical assays. Analysis were also performed in non-testosterone treated orchidectomized and sham-operated male WKY and SHR rats.

    RESULTS: Treatment of ovariectomized female WKY and SHR rats with testosterone causes increased in MAP but decreased in plasma aldosterone, sodium (Na+), osmolality and expression and distribution of α, β and γ-ENaC subunits in the kidneys. Orchidectomy decreased the MAP but increased plasma aldosterone, Na+, osmolality and α, β and γ-ENaC expression and distribution in the kidneys of male WKY and SHR rats.

    CONCLUSIONS: Decreased in plasma aldosterone, Na+ and ENaC levels in kidneys under testosterone influence indicated that testosterone-induced increased in MAP were not due to increased plasma aldosterone and ENaC levels in kidneys, and thus the testosterone effect on MAP likely involve other mechanisms.

    Matched MeSH terms: Aldosterone/administration & dosage*; Aldosterone/blood
  16. Chand R, Tandukar S, Asmil S, Chico M
    Cureus, 2020 Aug 07;12(8):e9599.
    PMID: 32923203 DOI: 10.7759/cureus.9599
    An adrenal incidentaloma is defined as an adrenal mass measuring at least 1 cm that is discovered surreptitiously in an imaging study done for reasons other than the evaluation of adrenal disease. The increase in the prevalence of adrenal incidentalomas has paralleled the increase in diagnostic imaging done for evaluation of other abdominal pathologies. However, most of these adrenal incidentalomas are benign non-hyperfunctioning adenomas. When an adrenal incidentaloma is discovered, the simultaneous presence of hypokalemia, metabolic alkalosis, mild hypernatremia, and mild to severe drug-resistant hypertension may alert a clinician to underlying primary hyperaldosteronism. We present a case of adrenal incidentaloma noted in a patient with end-stage renal disease on hemodialysis which presented a diagnostic challenge due to the correction of metabolic parameters with hemodialysis. The patient was found to have an aldosterone-producing adenoma based on an elevated aldosterone-to-renin ratio and was started on a mineralocorticoid antagonist.
    Matched MeSH terms: Aldosterone
  17. Azizan E, Sukor N, Kamaruddin NA, Jamal AR, Ceral J, Solar M, et al.
    J Hypertens, 2016 Sep;34 Suppl 1 - ISH 2016 Abstract Book:e550.
    PMID: 27754305
    Aldosterone-producing adenoma (APA) is a common curable cause of hypertension. Somatic mutations in five genes (KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1) have been found to cause the excess aldosterone production of two thirds of APAs [1-4]. KCNJ5 mutant APAs, the most common and largest, had explicit genotype-phenotype relationship - a low protein expression of KCNJ5 relative to their peritumoural zona glomerulosa (ZG) and a zona fasciculata-like composition [5-6]. Conversely for the other genes, controversy arises on whether they have the opposite cell phenotype [4,7-8]. This prospective study aim to to characterize the histopathological-specific mutation spectrum of APAs.
    Matched MeSH terms: Aldosterone
  18. Aimi Fadilah M, Fatimah MS, Nor Aisyah Z, Nur’Aini EW, Nazimah AM, Effat O, et al.
    MyJurnal
    Primary aldosteronism (PA) causes a persistently elevated blood pressure (BP) due to
    excessive release of the hormone aldosterone from the adrenal glands. Classically, it is called
    Conn’s syndrome and is described as the triad of hypertension and hypokalemia with the
    presence of unilateral adrenal adenoma. It can be cured with surgical resection of the
    aldosterone-secreting adenoma leading to resolution of hypertension, hypokalemia and
    increased cardiovascular risk associated with hyperaldosteronism. We present a case of a man
    with previous ischemic heart disease (IHD) who presented with resistant hypertension.
    Investigations for secondary causes of hypertension revealed an elevated aldosterone level
    and saline suppression test confirmed the diagnosis of PA. Radiological examination revealed
    a left adrenal adenoma and a normal right adrenal gland. However, adrenal venous sampling
    showed lateralization of aldosterone secretion towards the right. He subsequently underwent
    a laparoscopic right adrenalectomy which improved his BP control promptly. This case
    highlights the importance of recognizing the need to investigate for secondary causes of
    hypertension. It also underscores the importance of dynamic tests, which may not be easily
    accessible to most clinicians but should pursue, to allow a definitive diagnosis and effective
    treatment.
    Matched MeSH terms: Aldosterone
  19. Loh HH, Lim QH, Chai CS, Goh SL, Lim LL, Yee A, et al.
    J Sleep Res, 2023 Feb;32(1):e13726.
    PMID: 36104933 DOI: 10.1111/jsr.13726
    Obstructive sleep apnea is a chronic, sleep-related breathing disorder, which is an independent risk factor for cardiovascular disease. The renin-angiotensin-aldosterone system regulates salt and water homeostasis, blood pressure, and cardiovascular remodelling. Elevated aldosterone levels are associated with excess morbidity and mortality. We aimed to analyse the influence and implications of renin-angiotensin-aldosterone system derangement in individuals with and without obstructive sleep apnea. We pooled data from 20 relevant studies involving 2828 participants (1554 with obstructive sleep apnea, 1274 without obstructive sleep apnea). The study outcomes were the levels of renin-angiotensin-aldosterone system hormones, blood pressure and heart rate. Patients with obstructive sleep apnea had higher levels of plasma renin activity (pooled wmd+ 0.25 [95% confidence interval 0.04-0.46], p = 0.0219), plasma aldosterone (pooled wmd+ 30.79 [95% confidence interval 1.05-60.53], p = 0.0424), angiotensin II (pooled wmd+ 5.19 [95% confidence interval 3.11-7.27], p 
    Matched MeSH terms: Aldosterone
  20. Wu X, Azizan EAB, Goodchild E, Garg S, Hagiyama M, Cabrera CP, et al.
    Nat Genet, 2023 Jun;55(6):1009-1021.
    PMID: 37291193 DOI: 10.1038/s41588-023-01403-0
    Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.
    Matched MeSH terms: Aldosterone
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links