Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Ahmad R, Ali AM, Israf DA, Ismail NH, Shaari K, Lajis NH
    Life Sci, 2005 Mar 11;76(17):1953-64.
    PMID: 15707878
    The antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of seven Hedyotisspecies were investigated. The antioxidant activity was evaluated by the ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods while the radical scavenging activity was measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. The anti-inflammatory activity related to NO inhibition of the plant extracts was measured by the Griess assay while cytotoxicity were measured by the MTT assay against CEM-SS cell line. The antibacterial bioassay (against 4 bacteria, i.e. Bacillus subtilis B28 (mutant), Bacillus subtilis B29 (wild-type), Pseudomonas aeruginosa UI 60690 and methicillin resistant Staphylococcus aureus, (MRSA) was also carried out using the disc-diffusion method. All tested extracts exhibited very strong antioxidant properties when compared to Vitamin E (alpha-tocopherol) with percent inhibition of 89-98% in the FTC and 60-95% in the TBA assays. In the DPPH method, H. herbacea exhibited the strongest radical scavenging activity with an IC50 value of 32 microg/ml. The results from the Griess assay showed that the tested extracts are weak inhibitors of NO synthase. However, all tested extracts exhibited moderate cytotoxic properties against CEM-SS cell line giving CD50 values in the range of 21-41 microg/ml. In the antibacterial bioassay, the stems and the roots of H. capitellata showed moderate activity against the 4 tested bacteria while the leaves showed moderate activity towards B. subtilis B28, MRSA and P. aeruginosa only. The roots of H. dichotoma showed strong antibacterial activity against all 4 bacteria. All other extracts did not exhibit any antibacterial activity.
    Matched MeSH terms: alpha-Tocopherol/pharmacology
  2. Thoo YY, Abas F, Lai OM, Ho CW, Yin J, Hedegaard RV, et al.
    Food Chem, 2013 Jun 1;138(2-3):1215-9.
    PMID: 23411234 DOI: 10.1016/j.foodchem.2012.11.013
    The synergistic antioxidant effects of ethanolic extracts of Centella asiatica (CE), and α-tocopherol have been studied. The types of interactions exhibited by CE and α-tocopherol combined at different ratios were measured using three assays: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical-scavenging capacity, the β-carotene bleaching system and liposome peroxidation assays. Fixed-fraction isobolographic analysis was used to detect any inducement of the antioxidant activity compared with the individual activities of CE and α-tocopherol. Of all synergistic combinations of CE and α-tocopherol, only fraction 2/3 showed the synergistic combination that fits well in three different assays and can be explained by the regeneration of α-tocopherol by CE despite the interaction effect of β-carotene present in the analytical assay. This phenomenon involved complex interactions between CE and α-tocopherol to exhibit different degrees of interactions that eventually increased antioxidant activity.
    Matched MeSH terms: alpha-Tocopherol/pharmacology
  3. Maulida S, Eriani K, Fadli N, Siti-Azizah MN, Kocabas FK, Kocabas M, et al.
    Cryobiology, 2024 Mar;114:104851.
    PMID: 38237749 DOI: 10.1016/j.cryobiol.2024.104851
    Sperm quality is preserved through the crucial involvement of antioxidants, which play a vital role in minimizing the occurrence of reactive oxygen species (ROS) during the cryopreservation process. The suitability of the type and concentration of antioxidants are species-dependent, and this study is crucial in order to improve the quality of the climbing perch sperm post-cryopreservation. Therefore, this study aimed to determine the best type and concentration of antioxidants for cryopreservation of climbing perch Anabas testudineus sperm. To achieve this, 6 types of antioxidants, namely, ascorbic acid, beta-carotene, glutathione, butylated hydroxytoluene (BHT), myo-inositol, and alpha-tocopherol, with inclusion of a control were tested in 3 replications at three concentration levels of 0 mg/L (control), 20 mg/L, 40 mg/L, and 60 mg/L. Sperm was diluted in a glucose-base extender at a ratio of 1:60 (sperm: glucose base), then 10 % DMSO and 5 % egg yolk was added before cryopreservation for two weeks. The results showed that the type and concentration of antioxidants had a significant effect on the motility and viability of cryopreserved climbing perch sperm (P alpha-tocopherol were obtained at a concentration of 60 mg/L, while BHT was at a concentration of 20 mg/L. The best results for glutathione, myo-inositol, and alpha-tocopherol were significantly different from other treatments, while the best results for ascorbic acid and beta-carotene (60 mg/L) were not significantly different from the 40 mg/L concentration, while the best results for BHT were not significantly different from the control treatments. Therefore, the best concentration of glutathione, myo-inositol, and alpha-tocopherol was 60 mg/L, while for ascorbic acid and beta-carotene it was 40 mg/L, and BHT was not recommended. DNA integrity analysis indicated the absence of fragmentation in all samples, including fresh, control, and treated sperm. Based on practical and economic considerations, myo-inositol at 60 mg/L was recommended for cryopreservation of climbing perch A. testudineus sperm.
    Matched MeSH terms: alpha-Tocopherol/pharmacology
  4. Chin KY, Ima-Nirwana S
    Nutrients, 2014 Apr;6(4):1424-41.
    PMID: 24727433 DOI: 10.3390/nu6041424
    Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to clarify the role of αTF on bone health. Our review found that αTF exerted beneficial, harmful or null effects on bone formation cells. Animal studies generally showed positive effects of αTF supplementation on bone in various models of osteoporosis. However, high-dose αTF was possibly detrimental to bone in normal animals. Human studies mostly demonstrated a positive relationship between αTF, as assessed using high performance liquid chromatography and/or dietary questionnaire, and bone health, as assessed using bone mineral density and/or fracture incidence. Three possible reasons high dosage of αTF can be detrimental to bone include its interference with Vitamin K function on bone, the blocking of the entry of other Vitamin E isomers beneficial to bone, and the role of αTF as a prooxidant. However, these adverse effects have not been shown in human studies. In conclusion, αTF may have a dual role in bone health, whereby in the appropriate doses it is beneficial but in high doses it may be harmful to bone.
    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  5. Rahmat A, Kumar V, Fong LM, Endrini S, Sani HA
    Asia Pac J Clin Nutr, 2004;13(3):308-11.
    PMID: 15331345
    Antioxidants play an important role in inhibiting and scavenging radicals, thus providing protection to humans against infections and degenerative diseases. Literature shows that the antioxidant activity is high on herbal and vegetable plants. Realizing the fact, this research was carried out to determine total antioxidant activity and the potential anticancer properties in three types of selected local vegetable shoots such as Diplazium esculentum (paku shoot), Manihot utillissima (tapioca shoot) and Sauropous androgynus (cekur manis). The research was also done to determine the effect of boiling, on total antioxidant activity whereby samples of fresh shoots are compared with samples of boiled shoots. In every case, antioxidant activity is compared to alpha-tocopherol and two methods of extraction used are the organic and the aqueous methods. Besides that, two research methods used were the ferric thiocyanate (FTC) and thiobarbituric acid (TBA) with absorbance of 500nm and 532nm respectively. Oneway ANOVA test at P<0.05 determines significant differences between various samples. In the cytotoxic study, the ethanolic extract and several cell lines i.e. breast cancer (MDA-MB-231 and MCF-7), colon cancer (Caco-2), liver cancer (HepG2) and normal liver (Chang liver) were used. The IC(50)-value was determined by using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The antioxidant study found that all the samples in both aqueous and organic extraction were significantly different. The total antioxidant activity values of aqueous extract in descending order are as follows: M. utilissima (fresh) >D. esculentum (fresh) >S.androgynus (fresh) > M.utilissima (boiled) > D. esculentum (boiled) > S.androgynus (boiled). It also was found that S.androgynus shoots ethanolic extract was able to inhibit the viability of the breast cancer cell lines, MDA-MB-231 with the IC50 value of 53.33 micrograms/ml. However, S.androgynus shoots and D. esculentum shoots ethanolic extracts did not inhibit the viability of MDA-MB-231 cell line. While, the tapioca shoot ethanolic extract was able to inhibit the viability of MCF-7 cell line with the IC(50) value of 52.49 micrograms/ml. S.androgynus shoots and D.esculentum shoots ethanolic extracts did not give an IC(50) value against the MCF-7 cell line. S.androgynus, tapioca and D.esculentum shoots ethanolic extracts did not show cytotoxic effect against the Caco-2 and HepG2. There was no IC(50)-value from any sample against Chang Liver cell line. In conclusion, the antioxidant activity of both fresh and boiled samples were higher than alpha-tocopherol, although fresh vegetable shoots were found to be higher in antioxidant activity compared to boiled shoots. This study also suggested that S.androgynus shoots and tapioca shoots have potential as an anticancer agent against certain breast tumours.
    Matched MeSH terms: alpha-Tocopherol/pharmacology
  6. Chiroma AA, Khaza'ai H, Abd Hamid R, Chang SK, Zakaria ZA, Zainal Z
    PLoS One, 2020;15(11):e0241112.
    PMID: 33232330 DOI: 10.1371/journal.pone.0241112
    Natural α-tocopherol (α-TCP), but not tocotrienol, is preferentially retained in the human body. α-Tocopherol transfer protein (α-TTP) is responsible for binding α-TCP for cellular uptake and has high affinity and specificity for α-TCP but not α-tocotrienol. The purpose of this study was to examine the modification of α-TTP together with other related vitamin E-binding genes (i.e., TTPA, SEC14L2, and PI-TPNA) in regulating vitamin E uptake in neuronal cells at rest and under oxidative stress. Oxidative stress was induced with H2O2 for an hour which was followed by supplementation with different ratios of α-TCP and tocotrienol-rich fraction (TRF) for four hours. The cellular levels of vitamin E were quantified to determine bioavailability at cellular levels. The expression levels of TTPA, SEC14L2, and PI-TPNA genes in 0% α-TCP were found to be positively correlated with the levels of vitamin E in resting neuronal cells. In addition, the regulation of all the above-mentioned genes affect the distribution of vitamin E in the neuronal cells. It was observed that, increased levels of α-TCP secretion occur under oxidative stress. Thus, our results showed that in conclusion vitamin E-binding proteins may be modified in the absence of α-TCP to produce tocotrienols (TCT), as a source of vitamin E. The current study suggests that the expression levels of vitamin E transport proteins may influence the cellular concentrations of vitamin E levels in the neuronal cells.
    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  7. Makpol S, Zainuddin A, Rahim NA, Yusof YA, Ngah WZ
    Planta Med, 2010 Jun;76(9):869-75.
    PMID: 20112180 DOI: 10.1055/s-0029-1240812
    Antioxidants such as vitamin E may act differently on skin cells depending on the age of the skin and the level of oxidative damage induced. The effects of alpha-tocopherol (ATF) on H(2)O(2)-induced DNA damage and telomere shortening of normal human skin fibroblast cells derived from young and old individual donors were determined. Fibroblasts were divided into five groups; untreated control, H(2)O(2)-induced oxidative stress, alpha-tocopherol treatment, and pre- and post-treatment with alpha-tocopherol for H(2)O(2)-induced oxidative stress. Our results showed that H(2)O(2)-induced oxidative stress increased DNA damage, shortened the telomere length and reduced the telomerase activity (p < 0.05) in fibroblasts obtained from young and old donors. Pre- and post-treatment with alpha-tocopherol protected against H(2)O(2)-induced DNA damage in fibroblasts obtained from young individuals (p = 0.005; p = 0.01, respectively). However, in fibroblasts obtained from old individuals, similar protective effects were only seen in cells pretreated with alpha-tocopherol (p = 0.05) but not in the post-treated cells. Protection against H(2)O(2)-induced telomere shortening was observed in fibroblasts obtained from both young and old donors which were pre-treated with alpha-tocopherol (p = 0.009; p = 0.008, respectively). However, similar protective effects against telomere shortening in fibroblasts obtained from both young and old donors were not observed in the post-treated fibroblasts. Protection against H(2)O(2)-induced telomerase activity loss was observed only in fibroblasts obtained from old donors which were pretreated with alpha-tocopherol (p = 0.04) but not in fibroblasts obtained from young donors. Similar protective effects against telomerase activity loss in fibroblasts obtained from both young and old donors were not observed in the post-treated fibroblasts. In conclusion, alpha-tocopherol protected against H(2)O(2)-induced telomere shortening by restoring the telomerase activity. It also modulated H(2)O(2)-induced DNA damage and this modulation was affected by donor age.
    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  8. Mohamad S, Shuid AN, Mohamed N, Fadzilah FM, Mokhtar SA, Abdullah S, et al.
    Clinics (Sao Paulo), 2012 Sep;67(9):1077-85.
    PMID: 23018307
    OBJECTIVE: Osteoporosis increases the risk of bone fractures and may impair fracture healing. The aim of this study was to investigate whether alpha-tocopherol can improve the late-phase fracture healing of osteoporotic bones in ovariectomized rats.

    METHOD: In total, 24 female Sprague-Dawley rats were divided into three groups. The first group was sham-operated, and the other two groups were ovariectomized. After two months, the right femora of the rats were fractured under anesthesia and internally repaired with K-wires. The sham-operated and ovariectomized control rat groups were administered olive oil (a vehicle), whereas 60 mg/kg of alpha-tocopherol was administered via oral gavage to the alpha-tocopherol group for six days per week over the course of 8 weeks. The rats were sacrificed, and the femora were dissected out. Computed tomography scans and X-rays were performed to assess fracture healing and callus staging, followed by the assessment of callus strengths through the biomechanical testing of the bones.

    RESULTS: Significantly higher callus volume and callus staging were observed in the ovariectomized control group compared with the sham-operated and alpha-tocopherol groups. The ovariectomized control group also had significantly lower fracture healing scores than the sham-operated group. There were no differences between the alpha-tocopherol and sham-operated groups with respect to the above parameters. The healed femora of the ovariectomized control group demonstrated significantly lower load and strain parameters than the healed femora of the sham-operated group. Alpha-tocopherol supplementation was not able to restore these biomechanical properties.

    CONCLUSION: Alpha-tocopherol supplementation appeared to promote bone fracture healing in osteoporotic rats but failed to restore the strength of the fractured bone.

    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  9. Gopal K, Gowtham M, Sachin S, Ravishankar Ram M, Shankar EM, Kamarul T
    Sci Rep, 2015 Dec 16;5:18300.
    PMID: 26670291 DOI: 10.1038/srep18300
    Angiotensin II is one of the key regulatory peptides implicated in the pathogenesis of liver disease. The mechanisms underlying the salubrious role of α-tocopherol and β-carotene on liver pathology have not been comprehensively assessed. Here, we investigated the mechanisms underlying the role of Angiotensin II on hepatic damage and if α-tocopherol and β-carotene supplementation attenuates hepatic damage. Hepatic damage was induced in Apoe(-/-)mice by infusion of Angiotensin II followed by oral administration with α-tocopherol and β-carotene-enriched diet for 60 days. Investigations showed fibrosis, kupffer cell hyperplasia, hepatocyte degeneration and hepatic cell apoptosis; sinusoidal dilatation along with haemorrhages; evidence of fluid accumulation; increased ROS level and increased AST and ALT activities. In addition, tPA and uPA were down-regulated due to 42-fold up-regulation of PAI-1. MMP-2, MMP-9, MMP-12, and M-CSF were down-regulated in Angiotensin II-treated animals. Notably, α-tocopherol and β-carotene treatment controlled ROS, fibrosis, hepatocyte degeneration, kupffer cell hyperplasia, hepatocyte apoptosis, sinusoidal dilatation and fluid accumulation in the liver sinusoids, and liver enzyme levels. In addition, PAI-1, tPA and uPA expressions were markedly controlled by β-carotene treatment. Thus, Angiotensin II markedly influenced hepatic damage possibly by restraining fibrinolytic system. We concluded that α-tocopherol and β-carotene treatment has salubrious role in repairing hepatic pathology.
    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  10. Selvaraju TR, Khaza'ai H, Vidyadaran S, Abd Mutalib MS, Vasudevan R
    Bosn J Basic Med Sci, 2014 Nov 16;14(4):195-204.
    PMID: 25428670 DOI: 10.17305/bjbms.2014.4.91
    Tocotrienol rich fraction (TRF) is an extract of palm oil, which consists of 25% alpha tocopherol (α-TCP) and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection, and cholesterol lowering activities. Glutamate is the main excitatory amino acid neurotransmitter in the central nervous system of mammalian, which can be excitotoxic, and it has been suggested to play a key role in neurodegenerative disorders like Parkinson's and Alzheimer's diseases. In this present study, the effects of vitamin E (TRF and α-TCP) in protecting astrocytes against glutamate injury were elucidated. Astrocytes induced with 180 mM of glutamate lead to significant cell death. However, glutamate mediated cytotoxicity was diminished via pre and post supplementation of TRF and α-TCP. Hence, vitamin E acted as a potent antioxidant agent in recovering mitochondrial injury due to elevated oxidative stress, and enhanced better survivability upon glutamate toxicity.
    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  11. Ramdas P, Rajihuzzaman M, Veerasenan SD, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cancer Genomics Proteomics, 2011 Jan-Feb;8(1):19-31.
    PMID: 21289334
    Tocotrienols belong to the vitamin E family and have multiple anticancer effects, such as antiproliferative, antioxidant, pro-apoptosis and antimetastatic. This study aimed to identify the genes that are regulated in human breast cancer cells following exposure to various isomers of vitamin E as these may be potential targets for the treatment of breast cancer.
    Matched MeSH terms: alpha-Tocopherol/pharmacology
  12. Yam ML, Abdul Hafid SR, Cheng HM, Nesaretnam K
    Lipids, 2009 Sep;44(9):787-97.
    PMID: 19655189 DOI: 10.1007/s11745-009-3326-2
    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.
    Matched MeSH terms: alpha-Tocopherol/pharmacology
  13. Malek SN, Shin SK, Wahab NA, Yaacob H
    Molecules, 2009;14(5):1713-24.
    PMID: 19471192 DOI: 10.3390/molecules14051713
    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.
    Matched MeSH terms: alpha-Tocopherol/pharmacology
  14. Nur Azlina MF, Nafeeza MI
    Pharmazie, 2008 Dec;63(12):890-2.
    PMID: 19177905
    This study investigates the effects of tocotrienol (TT) or alpha-tocopherol (TF) supplementation on corticosterone level, noradrenalin level and gastric lesions in rats exposed to restraint stress. Twenty-four male Sprague Dawley rats were randomly assigned into 4 equally sized groups; two control groups were given olive oil, while the treated group was supplemented with either tocotrienol of tocopherol orally at a dose of 60 mg/kg body weight. After 28 days of treatment, one control group, TT group and TF group were subjected to restraint stress, 2 hours daily for 4 consecutive days. After the last exposure to stress, plasma samples were taken to determine the corticosterone and noradrenalin levels, after which the rats were sacrificed. The stomach was excised for the evaluation of gastric lesions. Our findings showed that TT and TF were able to maintain the corticosterone level to the prestress values, while only TT was able to maintain the noradrenalin level in rats exposed to stress. Tocotrienol was found to be better in preventing formation of gastric lesions compared to TF. As a conclusion, the protective effect of vitamin E was related to the ability to inhibit stress induced elevation of corticosterone and noradrenalin levels.
    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  15. Then SM, Mazlan M, Mat Top G, Wan Ngah WZ
    Cell Mol Neurobiol, 2009 Jun;29(4):485-96.
    PMID: 19172392 DOI: 10.1007/s10571-008-9340-8
    Besides acting as potent free radical scavengers, tocopherols and tocotrienols have been known to have non-antioxidant properties such as the involvement of alpha-tocopherol (alphaT) in PKC pathway and the anti-cancer properties of gamma-tocotrienol (gammaT3). This study aims to elucidate whether protective effects shown by alphaT and gammaT3 in H(2)O(2)-induced neuron cultures have anti-apoptotic or pro-apoptotic tendency toward the initiation of neuronal apoptosis. H(2)O(2) is used to induce apoptosis in primary cerebellar neuron cultures which is attenuated by pretreatment of alphaT or gammaT3 at concentrations < or =10 microM. Similar to our previous work, gammaT3 was found to be neurotoxic at concentrations > or =100 microM, whereas alphaT showed no neurotoxicity. Cellular uptake of gammaT3 was higher than that of alphaT. Treating cells simultaneously with either gammaT3 or alphaT and with then H(2)O(2) led to higher expression of Bax and Bcl-2 than in neurons exposed to H(2)O(2) alone. Analysis of Bcl-2/Bax ratio as 'survival index' showed that both pretreatment of gammaT3 and alphaT followed by H(2)O(2) increase the 'survival index' of Bcl-2/Bax ratio compared to H(2)O(2)-treated cells, while treatment of gammaT3 alone decrease the ratio compared to unchanged Bcl2/Bax ratio of similar treatment with alphaT alone. Similar treatment of gammaT3 decreased p53 expression and activates p38 MAPK phosphorylation, whereas alphaT did not alter its expression compared to H(2)O(2)-treated cells. Treating neurons with only gammaT3 or alphaT increased the expression of Bax, Bcl-2, p53, and p38 MAPK compared to control with gammaT3 exerting stronger expression for proteins involved than alphaT. In conclusion, low doses of gammaT3 and alphaT confer neuroprotection to H(2)O(2)-treated neurons via their antioxidant mechanism but gammaT3 has stronger pro-apoptosis tendency than alphaT by activating molecules involved in the neuronal apoptotic pathway in the absence of H(2)O(2).
    Matched MeSH terms: alpha-Tocopherol/pharmacology
  16. Maniam S, Mohamed N, Shuid AN, Soelaiman IN
    Basic Clin Pharmacol Toxicol, 2008 Jul;103(1):55-60.
    PMID: 18598299 DOI: 10.1111/j.1742-7843.2008.00241.x
    The aim of this study was to investigate the effects of vitamin E on the levels of lipid peroxidation and antioxidant enzymes in rat bones. Fifty-six normal male Sprague-Dawley rats, aged 3 months, were randomly divided into seven groups with eight rats in each group. The age-matched control group was given the vehicle olive oil, by oral gavage daily. Six of the treatment groups received either palm tocotrienol or pure alpha-tocopherol at the dose of 30, 60 or 100 mg/kg body weight, by oral gavage daily, 6 days a week for 4 months. Thiobarbituric acid-reactive substance (TBARS) that is an index to measure the level of lipid peroxidation and the antioxidant enzymes, glutathione peroxidase and superoxide dismutase levels were measured in the femur at the end of the study. Palm tocotrienol at the dose of 100 mg/kg body weight significantly reduced the TBARS level in the femur with a significant increase in glutathione peroxidase activity compared to the age-matched control group. These were not observed in the alpha-tocopherol groups. Palm tocotrienol was more effective than pure alpha-tocopherol acetate in suppressing lipid peroxidation in bone. Palm tocotrienol showed better protective effect against free radical damage in the femur compared to alpha-tocopherol. This study suggests that palm tocotrienol plays an important role in preventing imbalance in bone metabolism due to free radicals.
    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  17. Musalmah M, Nizrana MY, Fairuz AH, NoorAini AH, Azian AL, Gapor MT, et al.
    Lipids, 2005 Jun;40(6):575-80.
    PMID: 16149736
    The effect of supplementing 200 mg/kg body weight palm vitamin E (PVE) and 200 mg/kg body weight alpha-tocopherol (alpha-Toc) on the healing of wounds in streptozotocin-induced diabetic rats was evaluated. The antioxidant potencies of these two preparations of vitamin E were also evaluated by determining the antioxidant enzyme activities, namely, glutathione peroxidase (GPx) and superoxide dismutase (SOD), and malondialdehyde (MDA) levels in the healing of dermal wounds. Healing was evaluated by measuring wound contractions and protein contents in the healing wounds. Cellular redistribution and collagen deposition were assessed morphologically using cross-sections of paraffin-embedded day-10 wounds stained according to the Van Gieson method. GPx and SOD activities as well as MDA levels were determined in homogenates of day-10 dermal wounds. Results showed that PVE had a greater potency to enhance wound repair and induce the increase in free radical-scavenging enzyme activities than alpha-Toc. Both PVE and alpha-Toc, however, were potent antioxidants and significantly reduced the lipid peroxidation levels in the wounds as measured by the reduction in MDA levels.
    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  18. Ima-Nirwana S, Suhaniza S
    J Med Food, 2004;7(1):45-51.
    PMID: 15117552
    Long-term glucocorticoid treatment is associated with severe side effects, such as obesity and osteoporosis. A palm oil-derived vitamin E mixture had been shown previously to be protective against osteoporosis in rats given 120 microg/kg dexamethasone daily for 12 weeks. In this study we determined the effects of two isomers of vitamin E (i.e., palm oil-derived gamma-tocotrienol and the commercially available alpha-tocopherol, 60 mg/kg of body weight/day) on body composition and bone calcium content in adrenalectomized rats replaced with two doses of dexamethasone, 120 microg/kg and 240 microg/kg daily. Treatment period was 8 weeks. gamma-Tocotrienol (60 mg/kg of body weight/day) was found to reduce body fat mass and increase the fourth lumbar vertebra bone calcium content in these rats, while alpha-tocopherol (60 mg/kg of body weight/day) was ineffective. Therefore, in conclusion, palm oil-derived gamma-tocotrienol has the potential to be utilized as a prophylactic agent in prevention of the side effects of long-term glucocorticoid use.
    Matched MeSH terms: alpha-Tocopherol/pharmacology
  19. Shuid AN, Mohamad S, Muhammad N, Fadzilah FM, Mokhtar SA, Mohamed N, et al.
    J Orthop Res, 2011 Nov;29(11):1732-8.
    PMID: 21547940 DOI: 10.1002/jor.21452
    Fracture healing is a complex process, which is more complicated if the bone is osteoporotic. One of the vitamin E isomers, α-tocopherol, has been found to prevent osteoporosis and improve bone fracture healing but its role in the healing of osteoporotic fractures is still unclear. We carried out a study on the effects of α-tocopherol supplementation on osteoporotic fracture healing using an ovariectomized rat model, whereby we focused on the early phase of fracture healing, that is, the phase with excessive production of free radicals. Twenty-four female Sprague-Dawley rats were divided into three groups: sham-operated (SO), ovariectomized-control (OVC), and ovariectomized + α-tocopherol supplementation (ATF) groups. The right femora of all the rats were fractured at mid-diaphysis and K-wires were inserted for internal fixation. After 2 weeks of treatment, the rats were euthanized and the femora were dissected out for measurement of callous volume by CT-scan and radiological staging of callous formation and fracture healing. The oxidative parameters of the fractured femora were also measured. The results showed that the callous volume and callous staging were not different between the groups. However, the fracture healing stage of the OVC group was lower than the SO group, while α-tocopherol supplementation in the ATF group had improved the healing until it was comparable to the SO group. The activities of the anti-oxidatant enzymes, superoxide dismutase, and glutathione peroxidase in the ATF group were found to be significantly higher than in the OVC group. In conclusion, α-tocopherol improved fracture healing but had no effect on the callous volume and staging. The improvement in fracture healing may be due to the increased activities of the anti-oxidatant enzymes in the bone during the early phase of fracture healing of osteoporotic bone.
    Matched MeSH terms: alpha-Tocopherol/pharmacology*
  20. Ahmad NS, Khalid BA, Luke DA, Ima Nirwana S
    Clin Exp Pharmacol Physiol, 2005 Sep;32(9):761-70.
    PMID: 16173934
    1. Free radicals generated by ferric nitrilotriacetate (FeNTA) can activate osteoclastic activity and this is associated with elevation of the bone resorbing cytokines interleukin (IL)-1 and IL-6. In the present study, we investigated the effects of 2 mg/kg FeNTA (2 mg iron/kg) on the levels of serum IL-1 and IL-6 with or without supplementation with a palm oil tocotrienol mixture or alpha-tocopherol acetate in Wistar rats. 2. The FeNTA was found to elevate levels of IL-1 and IL-6. Only the palm oil tocotrienol mixture at doses of 60 and 100 mg/kg was able to prevent FeNTA-induced increases in IL-1 (P < 0.01). Both the palm oil tocotrienol mixture and alpha-tocopherol acetate, at doses of 30, 60 and 100 mg/kg, were able to reduce FeNTA-induced increases in IL-6 (P < 0.05). Therefore, the palm oil tocotrienol mixture was better than pure alpha-tocopherol acetate in protecting bone against FeNTA (free radical)-induced elevation of bone-resorbing cytokines. 3. Supplementation with the palm oil tocotrienol mixture or alpha-tocopherol acetate at 100 mg/kg restored the reduction in serum osteocalcin levels due to ageing, as seen in the saline (control) group (P < 0.05). All doses of the palm oil tocotrienol mixture decreased urine deoxypyridinoline cross-link (DPD) significantly compared with the control group, whereas a trend for decreased urine DPD was only seen for doses of 60 mg/kg onwards of alpha-tocopherol acetate (P < 0.05). 4. Bone histomorphometric analyses have shown that FeNTA injections significantly lowered mean osteoblast number (P < 0.001) and the bone formation rate (P < 0.001), but raised osteoclast number (P < 0.05) and the ratio of eroded surface/bone surface (P < 0.001) compared with the saline (control) group. Supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent all these FeNTA-induced changes, but a similar dose of alpha-tocopherol acetate was found to be effective only for mean osteoclast number. Injections of FeNTA were also shown to reduce trabecular bone volume (P < 0.001) and trabecular thickness (P < 0.05), whereas only supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent these FeNTA-induced changes.
    Matched MeSH terms: alpha-Tocopherol/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links