METHODS: Systematic review and NMA of randomised controlled trials were performed, and the most suitable CPA was chosen based on efficacy and the most favourable risk-benefit profile. The economic benefits of CPA alone, 3 yearly SC alone, and a combination of CPA and SC were determined using the cost-effectiveness analysis (CEA) in the Malaysian health-care perspective. Outcomes were reported as incremental cost-effectiveness ratios (ICERs) in 2018 US Dollars ($) per quality-adjusted life-year (QALY), and life-years (LYs) gained.
RESULTS: According to NMA, the risk-benefit profile favours the use of aspirin at very-low-dose (ASAVLD, ≤ 100 mg/day) for secondary prevention in individuals with previous ACAs. Celecoxib is the most effective CPA but the cardiovascular adverse events are of concern. According to CEA, the combination strategy (ASAVLD with 3-yearly SC) was cost-saving and dominates its competitors as the best buy option. The probability of being cost-effective for ASAVLD alone, 3-yearly SC alone, and combination strategy were 22%, 26%, and 53%, respectively. Extending the SC interval to five years in combination strategy was more cost-effective when compared to 3-yearly SC alone (ICER of $484/LY gain and $1875/QALY). However, extending to ten years in combination strategy was not cost-effective.
CONCLUSION: ASAVLD combined with 3-yearly SC in individuals with ACAs may be a cost-effective strategy for CRC prevention. An extension of SC intervals to five years can be considered in resource-limited countries.
METHODS: Our objective was to update and systematically evaluate the evidence for aspirin and other NSAIDs on the incidence of recurrent colorectal adenomas taking into consideration the risks of random error and to appraise the quality of evidence using GRADE (The Grading of Recommendations, Assessment, Development and Evaluation) approach. Retrieved trials were evaluated using Cochrane risk of bias instrument. Meta-analytic estimates were calculated with random-effects model and random errors were evaluated with trial sequential analysis (TSA).
RESULTS: In patients with a previous history of colorectal cancer or adenomas, low-dose aspirin (80-160 mg/day) compared to placebo taken for 2 to 4 years reduces the risk of recurrent colorectal adenomas (relative risk (RR), 0.80 [95% CI (confidence interval), 0.70-0.92]). TSA indicated a firm evidence for this beneficial effect. The evidence indicated moderate GRADE quality. Low-dose aspirin also reduces the recurrence of advanced adenomas (RR, 0.66 [95% CI, 0.44-0.99]); however, TSA indicated lack of firm evidence for a beneficial effect. High-dose aspirin (300-325 mg/day) did not statistically reduce the recurrent adenomas (RR, 0.90 [95% CI, 0.68-1.18]). Cyclooxygenase-2 (COX-2) inhibitors (e.g. celecoxib 400 mg/day) were associated with a significant decrease in the recurrence of both adenomas (RR, 0.66 [95% CI, 0.59-0.72]) and advanced adenomas (RR, 0.45 [95% CI, 0.33-0.57]); however, this association did not persist and there was a trend of an increased risk of recurrent adenomas observed 2 years after the withdrawal.
CONCLUSION: Our findings confirm the beneficial effect of low-dose aspirin on recurrence of any adenomas; however, effect on advanced adenomas was inconclusive. COX-2 inhibitors seem to be more effective in preventing recurrence of adenomas; however, there was a trend of an increased risk of recurrence of adenomas observed after discontinuing regular use.
METHODS: Pre-dosed urine samples were collected from male Sprague-Dawley rats. The rats were treated with either LDA (10 mg/kg) or 1% methylcellulose (10 mL/kg) per oral for 28 days. The rats' stomachs were examined for gastric toxicity using a stereomicroscope. The urine samples were analyzed using a proton nuclear magnetic resonance spectroscopy. Metabolites were systematically identified by exploring established databases and multivariate analyses to determine the spectral pattern of metabolites related to LDA-induced gastric toxicity.
RESULTS: Treatment with LDA resulted in gastric toxicity in 20/32 rats (62.5%). The orthogonal projections to latent structures discriminant analysis (OPLS-DA) model displayed a goodness-of-fit (R2Y) value of 0.947, suggesting near-perfect reproducibility and a goodness-of-prediction (Q2Y) of -0.185 with perfect sensitivity, specificity and accuracy (100%). Furthermore, the area under the receiver operating characteristic (AUROC) displayed was 1. The final OPLS-DA model had an R2Y value of 0.726 and Q2Y of 0.142 with sensitivity (100%), specificity (95.0%) and accuracy (96.9%). Citrate, hippurate, methylamine, trimethylamine N-oxide and alpha-keto-glutarate were identified as the possible metabolites implicated in the LDA-induced gastric toxicity.
CONCLUSION: The study identified metabolic signatures that correlated with the development of a low-dose Aspirin-induced gastric toxicity in rats. This pharmacometabolomic approach could further be validated to predict LDA-induced gastric toxicity in patients with coronary artery disease.
METHODS: A total of 165 patients with cardiovascular disease who were treated with 75-150 mg daily dose of aspirin and 300 healthy volunteers were recruited. DNA was extracted from the blood samples and genotyped for COX-1 (A-842G), UGT1A6 (UGT1A6*2 and UGT1A6*3) and CYP2C9 (CYP2C9*3; A1075C) using allele specific polymerase chain reaction (AS-PCR).
RESULTS: Variants UGT1A6*2,*3 and CYP2C9*3 were detected in relatively high percentage of 22.83%, 30.0% and 6.50%, respectively; while COX-1 (A-842G) was absent. The genotype frequencies for UGT1A6*2 and *3 were significantly different between Indians and Malays or Chinese. The level of bilirubin among patients with different genotypes of UGT1A6 was significantly different (p-value < 0.05). In addition, CYP2C9*3 was found to be associated with gastritis with an odd ratio of 6.8 (95 % Cl OR: 1.39 - 33.19; P = 0.033).
CONCLUSION: Screening of patients with defective genetic variants of UGT1A6 and CYP2C9*3 helps in identifying patients at risk of aspirin induced gastritis. However, a randomised clinical study of bigger sample size would be needed before it is translated to clinical use.
METHODS: We performed a 3 × 2 partial factorial double-blind trial of 17,598 participants with stable cardiovascular disease and peripheral artery disease. Participants were randomly assigned to groups given pantoprazole 40 mg daily or placebo, as well as rivaroxaban 2.5 mg twice daily with aspirin 100 mg once daily, rivaroxaban 5 mg twice daily, or aspirin 100 mg alone. The primary outcome was time to first upper gastrointestinal event, defined as a composite of overt bleeding, upper gastrointestinal bleeding from a gastroduodenal lesion or of unknown origin, occult bleeding, symptomatic gastroduodenal ulcer or ≥5 erosions, upper gastrointestinal obstruction, or perforation.
RESULTS: There was no significant difference in upper gastrointestinal events between the pantoprazole group (102 of 8791 events) and the placebo group (116 of 8807 events) (hazard ratio, 0.88; 95% confidence interval [CI], 0.67-1.15). Pantoprazole significantly reduced bleeding of gastroduodenal lesions (hazard ratio, 0.52; 95% confidence interval, 0.28-0.94; P = .03); this reduction was greater when we used a post-hoc definition of bleeding gastroduodenal lesion (hazard ratio, 0.45; 95% confidence interval, 0.27-0.74), although the number needed to treat still was high (n = 982; 95% confidence interval, 609-2528).
CONCLUSIONS: In a randomized placebo-controlled trial, we found that routine use of proton pump inhibitors in patients receiving low-dose anticoagulation and/or aspirin for stable cardiovascular disease does not reduce upper gastrointestinal events, but may reduce bleeding from gastroduodenal lesions. ClinicalTrials.gov ID: NCT01776424.
METHODS: We performed a 3 × 2 partial factorial double-blind trial of 17,598 participants with stable cardiovascular disease and peripheral artery disease randomly assigned to groups given pantoprazole (40 mg daily, n = 8791) or placebo (n = 8807). Participants were also randomly assigned to groups that received rivaroxaban (2.5 mg twice daily) with aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg) alone. We collected data on development of pneumonia, Clostridium difficile infection, other enteric infections, fractures, gastric atrophy, chronic kidney disease, diabetes, chronic obstructive lung disease, dementia, cardiovascular disease, cancer, hospitalizations, and all-cause mortality every 6 months. Patients were followed up for a median of 3.01 years, with 53,152 patient-years of follow-up.
RESULTS: There was no statistically significant difference between the pantoprazole and placebo groups in safety events except for enteric infections (1.4% vs 1.0% in the placebo group; odds ratio, 1.33; 95% confidence interval, 1.01-1.75). For all other safety outcomes, proportions were similar between groups except for C difficile infection, which was approximately twice as common in the pantoprazole vs the placebo group, although there were only 13 events, so this difference was not statistically significant.
CONCLUSIONS: In a large placebo-controlled randomized trial, we found that pantoprazole is not associated with any adverse event when used for 3 years, with the possible exception of an increased risk of enteric infections. ClinicalTrials.gov Number: NCT01776424.
METHODS: The authors randomized 10,010 patients with or at risk of atherosclerosis and scheduled for noncardiac surgery in a 1:1:1:1 ratio to clonidine/aspirin, clonidine/aspirin placebo, clonidine placebo/aspirin, or clonidine placebo/aspirin placebo. Patients started taking aspirin or placebo just before surgery; those not previously taking aspirin continued daily for 30 days, and those taking aspirin previously continued for 7 days. Patients were also randomly assigned to receive clonidine or placebo just before surgery, with the study drug continued for 72 h.
RESULTS: Neither aspirin nor clonidine had a significant effect on the primary 1-yr outcome, a composite of death or nonfatal myocardial infarction, with a 1-yr hazard ratio for aspirin of 1.00 (95% CI, 0.89 to 1.12; P = 0.948; 586 patients [11.8%] vs. 589 patients [11.8%]) and a hazard ratio for clonidine of 1.07 (95% CI, 0.96 to 1.20; P = 0.218; 608 patients [12.1%] vs. 567 patients [11.3%]), with effect on death or nonfatal infarction. Reduction in death and nonfatal myocardial infarction from aspirin in patients who previously had percutaneous coronary intervention at 30 days persisted at 1 yr. Specifically, the hazard ratio was 0.58 (95% CI, 0.35 to 0.95) in those with previous percutaneous coronary intervention and 1.03 (95% CI, 0.91to 1.16) in those without (interaction P = 0.033). There was no significant effect of either drug on death, cardiovascular complications, cancer, or chronic incisional pain at 1 yr (all P > 0.1).
CONCLUSIONS: Neither perioperative aspirin nor clonidine have significant long-term effects after noncardiac surgery. Perioperative aspirin in patients with previous percutaneous coronary intervention showed persistent benefit at 1 yr, a plausible sub-group effect.
METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months.
RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=-4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group.
CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events. (Funded by Bayer; COMPASS ClinicalTrials.gov number, NCT01776424 .).